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Abstract

This interdisciplinary thesis advances our understanding of solar transients by investigating the early
dynamics of Coronal Bright Fronts (CBFs), diagnosing solar type III radio bursts, and forecasting Solar
Energetic Proton (SEP) integral fluxes. Integrating these studies, we reveal the relationships among
these phenomena and their implications for space weather forecasting and hazard mitigation. Our anal-
ysis of 26 CBFs, using the Solar Particle Radiation Environment Analysis and Forecasting—Acceleration
and Scattering Transport (SPREAdFAST) framework and data from the Atmospheric Imaging Assem-
bly (ATA) and the Large Angle and Spectrometric Coronagraph (LASCO) instruments, unveils temporal
evolution, plasma properties, and compressional characteristics. The second study, employing the Low-
Frequency Array (LOFAR) and Parker Solar Probe (PSP), characterizes 9 type III radio bursts in the
combined dynamic spectrum and 16 in the LOFAR spectrum alone. Potential Field Source Surface
(PFSS) and magnetohydrodynamic (MHD) models offer insights into plasma conditions and magnetic
fields, advancing our understanding of type III radio bursts triggered by accelerated electrons associated
with CBFs and solar flares. Addressing forecasting, a bi-directional Long short-term memory (BiLSTM)
neural network using OMNIWeb data from 1976 to 2019 predicts SEP fluxes, emphasizing the haz-
ardous influence of energetic particles on Earth and technology. This work provides a unified framework,
highlighting the interconnected nature of solar transients and their collective impact on space weather.
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Definitions and Acronyms

Here, I provide definitions for key domain-specific terms and measurement concepts used consistently
throughout the thesis. Additionally, relevant terminology will be introduced within the corresponding
chapters. Below is a compilation of the essential technical terms and acronyms featured in this work:

CME — Coronal Mass Ejection

ICME — Interplanetary Coronal Mass Ejection

SF — Solar Flare

CIR - Corotating Interaction Region

IMF — Interplanetary Magnetic Field

GS — Geomagnetic Storm

Dst — Disturbance storm time

AU — Astronomical Unit

MPA — Measurement Position Angle

SEPs — Solar Energetic Particles/Protons

ESP — Energetic Storm Particle

EUV — Extreme Ultra-Violet

CBF — Coronal Bright Front

SRB — Solar Radio Burst

DH — Decameter-Hectometric

SOHO - Solar and Heliospheric Observatory

LASCO — Large Angle and Spectrometric Coronagraph
ERNE — Energetic and Relativistic Nuclei and Electron
EIT — Extreme ultraviolet Imaging Telescope

TRACE — Transition Region and Coronal Explorer

ESA — European Space Agency

MHD — Magneto-Hydro-Dynamic

MAS — Magnetohydrodynamic Algorithm outside a Sphere
PSI — Predictive Science Inc.

PFSS — Potential Field Source Surface

ATA — Atmospheric Imaging Assembly

SDO — Solar Dynamic Observatory

EUVI - Extreme Ultraviolet Imager

STEREO — Solar Terrestrial Relations Observatory
LOFAR — Low-Frequency Array

PSP — Parker Solar Probe

GOES — Geostationary Operational Environmental Satellite
SN — Sunspot Number

SC — Solar Cycle

sfu — solar flux units

pfu — proton flux units

L1 — First Lagrange point

SPDF — Space Physics Data Facility

SILSO — Sunspot Index and Long-term Solar Observations
NOAA — National Oceanic and Atmospheric Administration
NASA — National Aeronautics and Space Administration
GSFC — Goddard Space Flight Center
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SPREAdFAST — Solar Particle Radiation Environment Analysis and Forecasting—Acceleration and
Scattering Transport

CASHeW - Coronal Analysis of SHocks and Waves

DSA - Diffusive Shock Acceleration

SDA — Shock Drift Acceleration

S2M — Synthetic Shock Model

EPREM - Energetic Particle Radiation Environment Module

DEM - Differential Emission Measure

FLCT - Fourier Local Correlation Tracking

CM - Centers of Mass

GC — Geometric Center

GCS — Graduated Cylindrical Shell

NN — Neural Network

ML — Machine Learning

DL — Deep Learning

CNN — Convolutional Neural Network

GAN — Generative Adversarial Networks

RNN — Recurrent Neural Network

BiLSTM — Bi-directional Long short-term Memory

Adam — Adaptive moment estimation

MIMO — Multi-Input Multiple Output

MSE — Mean Squared Error

MAE — Mean Absolute Error

MSLE — Mean Squared Logarithmic Error

TP — True Positive

TN — True Negative

FP — False Positive

FN — False Negative

POD — Probability of Detection

POFD — Probability of False Detection

FAR — False Alarm Rate

CSI — Critical Success Index

TSS — True Skill Statistic

HSS — Heidke Skill Score



Chapter 1

Introduction

1.1 Background and Motivation

The Sun, an ordinary main-sequence star situated at the center of our solar system, exhibits various forms
of activity and variability on multiple spatial and temporal scales. Some of the main manifestations of
solar activity relevant to space weather research (Fig. are transient energetic eruptive phenomena
such as solar flares, Coronal Mass Ejections (CME), and wide-ranging emissions of electromagnetic
radiation and energetic particles (Schwenn|2006; [Pulkkinen|2007). These eruptive events originate due
to the sudden release of free magnetic energy stored in complex, twisted or sheared magnetic field
structures in the solar atmosphere (Moore et al.[2001; [Priest & Forbes|[2007; [Zhang et al.[[2012; |Amari
et al.[2014)). The energetic phenomena are driven by the rapid dissipation of magnetic energy via magnetic
reconnection which can accelerate large numbers of electrons to relativistic energies and heat plasma to
tens of million Kelvin (Shibata & Magaral|2011}; [Benz|2017)).

The eruptive solar events drive major disturbances in the near-Earth space environment and plane-
tary environments across the heliosphere, collectively termed space weather (Schrijver & Siscoe|[2010a;
Eastwood et al.|[2017). Enhanced fluxes of Solar Energetic Particles (SEPs), plasma ejecta, and electro-
magnetic radiation emitted during solar eruptions can impact the geomagnetic field, radiation belts,
ionosphere, thermosphere, and upper atmosphere surrounding the Earth (Schwenn| 2006; Pulkkinen
2007). Adverse effects range from disruption of radio communications to damage of satellites, power
grid failures, aviation hazards due to radiation risks for airline crew and passengers, and increased radi-
ation exposure for astronauts (Lanzerotti2001). The societal dependence on space-based infrastructure
has increased exponentially, escalating the vulnerability to space weather disturbances. Recent studies
estimate a severe space weather event could lead to trillion-dollar economic damages in the US alone
(Oughton et al.|2017). Besides the near-Earth space environment, solar eruptive transients also drive
adverse space weather effects across the solar system impacting activities such as deep space exploration
and astronomy (Lilensten et al.|[2014)).

Therefore, advancing our understanding of the origins and propagation characteristics of solar eruptive
phenomena, as well as quantifying their impacts on geospace and planetary environments, has become
an extremely important pursuit for nations worldwide. Fundamental research seeks to uncover the phys-
ical processes involved using observations coupled with theory and modeling. Concurrently, significant
efforts are underway to develop next-generation space environment modeling and forecasting capabilities
for predicting the impacts of solar variability. The field combining these research and predictive aspects
related to Sun-Earth connections is broadly termed heliophysics (Schrijver & Siscoe |2010b)). It encom-
passes understanding the fundamental solar, heliospheric and geospace plasma processes; coupling across
multiple spatial and temporal scales; quantifying the impacts on humanity’s technological systems and
space-borne assets; and utilizing this knowledge to prevent or mitigate adverse effects (Schrijver et al.
2015; |Schrijver||2015). NASA’s Living With a Star program and the National Science Foundation’s
Space Weather activities exemplify strategic efforts to advance scientific understanding and predictive
capabilities across the interconnected domains of heliophysics (Brewer et al.|[2002).

The present thesis focuses on studying several important phenomena related to solar eruptive activity
and its impacts from the perspective of heliophysics research and space weather. The specific topics in-
vestigated include: (1) the propagation and evolution characteristics of large-scale coronal disturbances
termed Extreme Ultra-Violet (EUV) waves that are triggered by CMEs and solar flares; (2) the genera-
tion, propagation and plasma characteristics of solar radio bursts emitted by accelerated electron beams



traveling along open magnetic field lines in the corona; (3) the forecasting of SEP events which constitute
one of the major components of space radiation hazards at Earth.
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Figure 1.1: On the left side, a graphical illustration, adapted from ESA/A. Baker, CC BY-SA 3.0 IGO,
depicts different eruptive phenomena, while on the right side, there is a representation of spacecraft data
(specifically Wind/Waves data from |Gopalswamy et al.| (2019)) showcasing a radio dynamic spectra,
emphasizing distinct spectral categories of SRBs on November 9, 2000. Type-II bursts are correlated
with the shock front of a CME, whereas Type-IIls are connected with the acceleration of SEPs. Image
courtesyﬂ

These diverse topics are united by the common theme of seeking to uncover the origins and propaga-
tion mechanisms of key transient phenomena resulting from solar eruptions, utilizing observational data,
analytical theory and modeling, and data science techniques. The phenomena have been studied for
several decades using observations from multiple space missions, but gaps persist in our understanding
of their underlying physics and space weather impacts. The thesis aims to provide new insights that
help address some of the outstanding questions, guided by the overarching goals and framework of helio-
physics research. Each research topic investigated in this thesis is explored in detail within its dedicated
chapter. These chapters delve into the relevant background, significance, observational challenges, and
knowledge gaps associated with each topic. Additionally, a concise overview of key literature related to
each topic is provided here, followed by a more in-depth review within each specific chapter.

1.1.1 Coronal Waves

Coronal waves, or Coronal Bright Fronts (CBFs), also known as EUV waves, are large-scale arc-shaped
bright fronts or disturbances observed propagating across significant portions of the solar corona following
the eruption of CMEs and solar flares (Thompson et al.|[1998; [Nindos et al.|2008; |Vrsnak & Cliver|[2008;
Magdaleni¢ et al.[|2010a; |[Veronig et al.|2010; Warmuth| 2015). They are best observed in EUV and
white-light coronal emission, as well as in radio wavelengths, spanning distances of up to several 100 Mm
with speeds ranging between 100-1000 km s~!, faster than the local characteristic speed in the solar
corona, transforming into shock waves (Pick et al.[2006; [Thompson & Myers||2009; [Nitta et al.|2013; |Liu
& Ofman|[2014). These structures consist of piled-up plasma with higher density, making them appear
brighter in white-light images.

The discovery of coronal waves dates back to observations obtained with the Extreme ultraviolet
Imaging Telescope (EIT) instrument on the Solar and Heliospheric Observatory (SOHO) launched in
1995, appearing as bright propagating fronts in 19.5 nm wavelength imaging of Fe XII emission lines
formed at ~ 1.5 MK plasma (Thompson et al.[1998). Subsequent studies based on SOHO/EIT and the
Transition Region and Coronal Explorer (TRACE) imaging found correlations between coronal waves
and CMEs, favoring an interpretation as fast-mode magneto-hydrodynamic (MHD) waves driven by
CME lateral expansions (Biesecker et al.[[2002).

Since 2010, the initiation and evolution of coronal waves are being exquisitely observed with unprece-
dented resolution by the Atmospheric Imaging Assembly (ATA) on the Solar Dynamics Observatory
(SDO) spacecraft (Lemen et al.|2012) across multiple EUV passbands sensitive to a wide temperature

Thttps://www.dias.ie/cosmicphysics/astrophysics/astro-surround/
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range (Nitta et al.|2013). Observing and studying coronal shock waves remotely is typically done through
EUV observations using space-based instruments such as the AIA onboard the SDO spacecraft. Alter-
natively, shock waves can be indirectly observed through the detection of type II radio bursts, which are
commonly associated with shock waves in the solar corona (Vrsnak & Cliver|[2008)).

The AIA instrument has provided valuable insights into the dynamics of the low solar corona over
the past decade, thanks to its exceptional spatial and temporal resolution. Equipped with telescopes
observing the solar disk in bands 193 and 211 A, the AIA instrument has demonstrated its ability to
distinguish compressive waves in the lower corona (Patsourakos et al.[[2010; Ma et al.|2011; Kozarev et al.
2011). These observations offer valuable information about the kinematics and geometric structure of
CBFs. To accurately study the evolution of the wave’s leading front, observations off the solar limb are
preferred to mitigate projection effects, which may introduce ambiguities in estimating time-dependent
positions and the global structure of the wave (Kozarev et al.[2015). Figure shows a CME launched
form the east limb on June 13, 2022, depicting the typical three-part structure of CMEs. The image
of the solar disk at the center of the figure is obtained from the SDO/AIA instrument at 04:12:05 UT,
while the outer coronagraph image is obtained from the SOHO/LASCO instrument at 04:12:07 UT. The
SOHO/EIT imaging data was not available at that time.

Typically, CMEs have three parts (Vourlidas et al.|[2013)):

e CME Front: This refers to the leading edge of a Coronal Mass Ejection (CME), which can take
on various shapes, such as loop-like or halo-shaped, depending on its position relative to the Sun’s
limb. The bright loop often observed represents plasma accumulation at the boundary of the

erupting flux rope, while the faint front preceding it is caused by density compression at a wave or
shock front propelled by the CME.

e CME Cavity: This is a zone characterized by reduced density and magnetic field strength located
behind the CME front. It forms as the prominence material, cool and dense, settles along the dips
of the magnetic field lines that compose the flux rope. Initially, during the eruption’s early stages,
most of the prominence material either moves towards the solar surface or heats up to coronal
temperatures. In coronagraphic imagery, the CME cavity appears as a dark area enclosed by the
bright CME front.

e CME Core: This central region of the CME encompasses the erupting plasma, where the magnetic
field lines are heavily twisted and carry significant magnetic energy.

CBF's are formed in front of the expanding front of CMEs. In situ observations of shock waves have
revealed their classification into quasi-parallel, quasi-perpendicular, sub-critical, and super-critical shocks
based on the angle between the wavefront normal vector and the upstream magnetic field lines (Tsurutani
1985). Quasi-parallel shocks have a shock-field angle (fpy) smaller than 45 ° , while quasi-perpendicular
shocks have O greater than 45°. Supercritical shocks, often associated with accelerated particles, are
promising candidates for generating type II radio bursts (Benz & Thejappa/|1988). However, obtaining
accurate estimates of shock strength and obliquity solely from remote observations is challenging.

Coronal waves exhibit diverse morphology and kinematics ranging from circular fronts to narrow
jets or expanding dome-like structures (Veronig et al.|2010). A taxonomy of wave properties based on
extensive observational surveys can be found in papers by [Muhr et al. (2014) and [Nitta et al. (2013)).
However, despite being observed for over two decades since their serendipitous discovery, fundamental
questions remain regarding the physical nature and drivers of coronal waves (Chen| 2016} Vrsnak &
Cliver| 2008, [Warmuth||2015). The debate centers around two competing interpretations — the wave
versus pseudo-wave (or non-wave) models. The wave models envisage coronal waves as fast-mode MHD
waves or shocks that propagate freely after being launched by a CME lateral over-expansion or an initial
flare pressure pulse (Wills-Davey et al.|[2007; [Vrsnak & Cliver||2008). The pseudo-wave models interpret
them as bright fronts produced by magnetic field restructuring related to the CME lift-off process rather
than a true wave disturbance (Delannée & Aulanier|[1999; (Chen et al.|[2002]).

Extensive observational and modeling studies have been undertaken to evaluate the two paradigms
(Patsourakos & Vourlidas||2012; [Long et al.|2017), but a consensus remains elusive. Addressing these
outstanding questions related to the nature and origin of coronal waves is imperative, since they are being
incorporated into models as a primary agent producing SEP events and geomagnetic storms following
CMEs (Rouillard et al.|2012; [Park et al.[2013). Their use as a diagnostic tool for CME and shock
kinematics predictions in these models requires discriminating between the different physical mechanisms
proposed for their origin.



2022-06-13 04:12:07
6000"

el Expanding
Front

Cavity Core

2000"

-2000"

Helioprojective Latitude (Solar-Y)
o

-4000"

-6000"
-6000" -4000" -2000" 0" 2000" 4000" 6000"
Helioprojective Longitude (Solar-X)
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The present thesis undertakes an extensive statistical analysis of coronal EUV wave events observed
by SDO to provide new insights into their kinematical properties and relationship to CMEs. I focus
on analyzing their large-scale evolution as a function of distance and direction from the source region,
leveraging the extensive EUV full-disk imaging capabilities of SDO spanning nearly a decade. Statistical
surveys to date have mostly focused on initial speeds and morphological classifications rather than large-
scale propagation characteristics. The first study presented in Chapter [2] aims to uncover systematic
trends in their propagation kinematics using a combination of techniques and data products, as well as
exploring relationships between different pairs of kinematical parameters compared to previous works.
The results have important implications for incorporating coronal waves into predictive models of CMEs
and SEP events for future space weather forecasting.

1.1.2 Solar Radio Bursts

Solar radio emissions have been the subject of extensive study and research due to their connection with
solar activity and their potential impact on Earth’s atmosphere and technology. One area of particular
interest is solar radio bursts, which are intense bursts of electromagnetic radiation originating from the
Sun. These bursts can be classified into different types based on their characteristics and associated
phenomena. Solar radio bursts, including type III bursts, serve as remote diagnostics for the study
of energetic electrons within the solar corona. These bursts result from transient energetic electron
beams injected into the corona, which then propagate along interplanetary magnetic field (IMF) lines
(Ergun et al.|1998} Pick et al.[[2006} Reid |2020). As these electron beams traverse the corona, they
induce plasma waves, also known as Langmuir waves, which subsequently transform into radio emission
at the local plasma frequency or its harmonic components (Melrose||2017). The frequency of the radio
emission is directly linked to the plasma density, making type III bursts a valuable tool for investigating
the inner heliosphere and understanding the underlying processes that drive solar active phenomena,
such as CMEs and solar flares (Reid & Ratcliffe|[2014; [Kontar et al.[[2017). These bursts offer insights
into the acceleration of energetic electrons in the corona and their transport along magnetic field lines
(Reid & Ratcliffe}[2014). The generation of electromagnetic emission at radio frequencies through plasma
emission mechanisms is a key aspect of solar radio bursts, shedding light on the dynamic interplay
between non-thermal electron distributions and the ambient plasma (Melrose |1980)).

Pioneering observations of solar radio bursts were made in the 1940s leading to their classifications
(Wild et al.[|1963). Subsequent spectrographic studies uncovered emission mechanisms, source regions
and particle diagnostics (Suzuki & Dulkl|1985)). Magnetic reconnection models of flares provided theoret-
ical explanations for particle acceleration generating radio bursts (Holman et al.|[2011). Radio imaging
spectroscopy using interferometric imaging arrays coupled with high time-frequency resolution spectrom-
eters enables tracking radio sources as a function of frequency and position on the Sun, yielding particle
acceleration locations and trajectories through the corona into interplanetary space (Krucker et al.[|[2011}
Klassen et al.|2003alb). This provides a unique diagnostic of energetic particle transport from the Sun
to the Earth which is crucial for improving SEP forecasting models.

Different types of bursts are observed (Fig. , classified based on their spectral characteristics as
documented in radio burst catalogs (Wild et al.|[1963]). The present thesis focuses on detailed analysis
of solar type III radio bursts and their associated phenomena. In radio spectrograms, type III radio
bursts manifest as intense enhancements of radio flux exceeding background levels. These bursts exhibit
rapid frequency drifts over timescales ranging from seconds to minutes, reflecting the underlying plasma
dynamics (Reid & Vilmer|[2017). Notably, they are observable across a broad spectrum of frequencies,
spanning from GHz to kHz, and corresponding wavelengths extending from metric to decametric (Wild
& McCready| 1950, |Lecacheux et al.||[1989; Bonnin et al.[[2008). This phenomenon is detectable by
ground-based instruments on Earth as well as various spacecraft within the heliosphere, underscoring
the significance of plasma dynamics in their manifestation.

Furthermore, these bursts arise from the propagation of energetic electron beams ejected during
magnetic reconnection. The observed rapid drift from high to low frequencies over seconds directly cor-
responds to the propagation of these electron beams from the Sun’s lower corona, outward along open
magnetic field lines, potentially extending beyond 1 astronomical unit (AU). This characteristic signature
signifies the initial escape of flare-accelerated electrons into interplanetary space, making type I1I bursts
a crucial precursor for subsequent SEP activity (Cane et al.[[2002; MacDowall et al.|2003). Investigating
their source locations, plasma environments, and beam kinematics based on multi-wavelength obser-
vations coupled with plasma emission theory is therefore vital for improved understanding of coronal
particle acceleration and transport processes relevant for SEP forecasting models.



Microwave Decimetric

Burst Continuum
3000 /[

1000 |

300 1

100 ~

FREQUENCY (MHz)

10 IHI I_ T T T T T T T
0 10 20 30 40 50 680 70 80 90

TIME SINCE FLARE (minutes)

Figure 1.3: Diagram illustrating the classification of solar radio bursts. Image courtesyEI

While type IIT bursts have been studied for over 50 years since their initial discovery by
McCready| (1950); Wild| (1950a.b), gaps persist in our understanding of their exciter beams and emission
mechanisms. Key outstanding questions pertain to the detailed electron acceleration and injection sites,
beam configurations and energy spectra, drivers of burst onset and duration, and the role of density
fluctuations in propagating beams (Reid & Kontar|2018bla} [Li & Cairns [2012). Recent work combines
imaging and spectral data with modeling to constrain radio burst exciters in unprecedented detail
let al||2013} [Kontar et al.|[2017). Key challenges remain in reconciling emission models with observa-
tions and predicting radio diagnostics. Advancing our knowledge of these aspects through coordinated
observations and modeling can help constrain the predictions of energetic electron properties based on
radio diagnostics. The present work undertakes detailed investigation of a solar type III burst combining
imaging and radio spectral data to derive electron beam trajectories and coronal densities, and models
the emission sources. The results provide insights into the corona plasma environment and energetic
electron transport relevant for SEP forecasting applications.

1.1.3 Solar Energetic Protons Forecasting

Solar energetic protons are high-energy particles that are believed to originate from the acceleration of
particles in the solar corona during solar flares and CMEs (Aschwanden|[2002} [Lin[2005, 2011} [Klein &
[Dalla/2017; Kahler et al|[2017). They are typically characterized by their high energy levels — with some
particles having energies in the relativistic GeV /nucleon range — and their ability to penetrate through
spacecraft shielding, causing radiation damage (Reames|2013; Desai & Giacalone|[2016). The fluence
and energy spectrum of SEP are influenced by several factors, including the strength of the solar flare
or CME that produced them, and the conditions of the interplanetary environment (Kahler et al.||1984]
1987, [Debrunner et al.|[1988; Miteva et al|2013} [Trottet et al|[2015} Dierckxsens et al.|2015; Le & Zhang]
2017} [Gopalswamy et al2017). In this thesis, I will refer to solar energetic protons as SEPs since they
are the major constituents of solar energetic particle events.

SEP exhibit a strong association with the solar cycle, with the frequency and flux of SEP events
peaking during the maximum phase of the solar cycle . This is thought to be due to the
increased activity of the Sun during this phase, which leads to more frequent and powerful flares and
CMEs. Previous studies have shown a relationship between the occurrence frequency of SEP and the
sunspot number (SN; Nymmik, 2007; Richardson et al.,|2016)). However, the exact relationship between
the solar cycle and SEP is complex and not fully understood. Hence, more work is needed to better
understand this connection, as previous studies have reported intense SEP events during relatively weak
solar activity (Cohen & Mewaldt|[2018; Ramstad et al.|2018]).

Figure demonstrates the impact of SEPs on the satellite’s instrument during the ”Halloween
storm” that occurred on October 28, 2003. This event remains one of the most significant and well-

2Types of solar radio bursts: http://solar.physics.montana.edu/takeda/radio_burst/srb.html
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studied solar storms in recent history. The Sun has released an X17-class flare, from an active region
located at S16E08, accompanied with a fast ( ~ 3000 km/s) Halo-CME hurtling towards the Earth. The
pepper and salt appearance in the coronal image, as described in [Gopalswamy et al. (2019)), is attributed
to SEP contamination of the SOHO telescope’s coronal signal, a phenomenon analogous to a snowstorm
effect.
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20000" 20000" 20000"

10000"

2
3

Helioprojective Latitude (SolarY)
Q
Helioprojective Latitude (SolarY)

-10000" -10000" 4§

-20000" -20000" -20000"

-20000" -10000" o 10000" 20000"
Helioprojective Longitude (Solar-X)

-20000"

Figure 1.4: Coronagraph image captured by the SOHO/LASCO C3 instrument during a Halo-CME
event. The speckled appearance of the corona results from signal contamination due to particles generated
when SEPs interact with the SOHO telescope.

SEP have been a subject of interest and research in heliophysics for decades. It is hypothesized that
shock waves generated in the corona can lead to an early acceleration of particles. However, SEP have
sufficient energy to propagate themselves by surfing the IMF, and therefore, the expanding CME is not
necessary for their transport (Reames||2000; Kéta et al.|2005; Kozarev et al| 2019, 2022). While this
theory has gained acceptance, there is an ongoing debate among scientists over the specific mechanisms
and conditions responsible for SEP production and acceleration.

The creation, acceleration, and transport mechanisms of SEP are complex and involve a combination
of magnetic reconnection, shock acceleration, and wave-particle interactions (Li et al.|2003},2012; [Ng et al.|
. The specific mechanisms responsible for SEP production and acceleration can vary depending on
the type and strength of the solar event that triggered them. Further research is imperative to better
understand the processes involved in the production and transport of SEP in the heliosphere. This
will facilitate the development of more precise models that assist in minimizing the impact of SEP on
astronauts and space-based assets.

The arrival of SEPs in the near-Earth space environment constitutes one of the major components
of adverse space weather (Reames |1999; Vainio et al.|2009). Solar energetic particle events consist
primarily of protons (and some heavy ions), accelerated to very high energies by CME-driven shock
waves during large solar eruptive events. The gradual SEP events, so called due to their long durations
from several hours to a few days, involve protons accelerated to energies above ~ 10 MeV which can
penetrate Earth’s magnetic field and atmosphere, posing radiation hazards to humans and equipment in
space and at polar regions (Reames|[2013). Impulsive SEP events, on the other hand, are rapid releases
of energetic particles, dominated by electrons and ions like Helium-3 (*He), associated with impulsive
flares and magnetic reconnection events on open field lines in the Sun’s corona (Nitta et al.2015). These
events are characterized by enrichments of *He compared to the normal Helium-4 (*He) ratio, along with
enhancements of heavy elements like Tron (Fe) and highly charged particles, indicating temperatures
around 5—10 million Kelvin .

Initial SEP forecasting models were based on empirical correlations between proton intensity profiles
and CME or solar flare properties (Kahler et al.|[2007). The complex physics of CME shock acceler-
ation combined with modeling the transport of SEPs through turbulent interplanetary magnetic fields
presents major challenges for first-principles based SEP forecasting models (Aran et al.|[2006; Laitinen &|
Dallal2017). As an alternative approach, empirical and data-driven models based on statistical/machine
learning techniques applied to historical SEP event data have shown considerable promise for operational
forecasting over the past decade (Laurenza et al.2009; |Camporeale| |2019; Kozarev et al|[2022)). This
motivates detailed investigation of data-driven SEP forecasting models using state-of-the-art machine
learning algorithms which can outperform conventional empirical methods.

The emergence of deep learning techniques has enabled application of sophisticated machine learning




models to SEP forecasting, yielding improved predictions since they can capture complex nonlinear
relationships between parameters which has been leveraged for diverse space weather applications recently
(Florios et al|[2018; |(Camporeale |2019)). Opportunities exist for novel forecasting approaches utilizing
deep learning algorithms and expanded input parameters. However, applications to SEP forecasting
problems are still limited, presenting an important research gap which I aim to address in this thesis. I
developed deep Neural Network (NN) models for predicting the intensity profile of eergetic protons in
three integral energy channels; >10, >30, and >60 MeV, utilizing various sets of inputs parameters. This
will be explained in more detail in the respective chapter. The developed model is trained and tested on
a database of historical SEP events spanning the previous four solar cycles, with the goal of producing
SEP flux forecasts over three output windows; one-day, two-day, and three-day in advance of particle
arrivals near Earth. Such capability can provide actionable information for mitigating radiation effects
from extreme SEP events. The study demonstrates the potential of state-of-the-art machine learning
algorithms to achieve significant enhancement of SEP forecasting capabilities building upon conventional
empirical methods.

1.2 Objectives and Scope

This PhD thesis delves into various aspects of solar phenomena, including Coronal Bright Fronts (CBFs),
solar type III radio bursts, and Solar Energetic Particle (SEP) events. The overarching goal is to gain
a deeper understanding of the physical processes occurring in the Sun’s corona and how they relate to
solar eruptions and energetic particle radiation.

Coronal Bright Fronts

One area of research focuses on CBFs, the leading edges of CMEs observed in the lower solar corona.
The specific objectives here are to:

e Analyze and characterize the properties of historical 26 CBF events observed by the ATA instrument
onboard the SDO spacecraft between 2010 and 2017.

e Investigate the relationship between the kinematics of these CBFs and the surrounding coronal
plasma environment.

This research utilizes data from the AIA instrument in the EUV 193 A band. Techniques like
base-difference images, J-maps, and the SPREAdFAST framework are employed to derive kinematic
measurements. 3D geometric models of the CBF wavefronts are generated based on these measurements.
Additionally, potential shock properties within the CBF's are explored by fitting a geometric spheroid
surface model to the kinematic data.

To extend the analysis of EUV wave kinematics into the middle corona, existing models developed
by Byrne et al.| (2013) and |Gallagher et al.| (2003) are incorporated. Finally, the research explores rela-
tionships between modeled plasma parameters within the corona to understand the underlying physical
mechanisms driving the CBF dynamics.

Solar Radio Bursts

A separate area of research focuses on the generation and propagation of type III radio bursts. Here,
the objectives are to:

e Unravel the physical mechanisms responsible for the production of type III radio bursts.
e Identify the location of the sources of these bursts within the solar corona.

e Investigate the relationships between the observed radio bursts, coronal magnetic field structures,
and the surrounding coronal plasma environment.

The scope of this research is limited to analyzing a specific set of type III bursts observed on April
3, 2019, utilizing data from the LOFAR and PSP instruments. This analysis involves:

e Comparing the observations with existing models of the solar corona to identify discrepancies and
limitations of these models.

e Exploring potential sources for the observed radio bursts, focusing on small-scale reconnection
events and active regions on the solar surface.



Solar Energetic Particle Forecasting

The final strand of this research tackles the challenge of forecasting SEP integral flux. Here, I aim to:

e Develop a cutting-edge BiLSTM neural network model capable of predicting the daily SEP integral
flux over a 3-day window.

e Specifically, the model will predict SEP intensity for three energy ranges: >10 MeV, >30 MeV,
and >60 MeV.

e [ then evaluate the BiILSTM model’s performance by comparing it to established forecasting models.

The development and evaluation process leverages historical SEP data encompassing the past four
solar cycles. Here is a breakdown of the specific scope:

e Solar and interplanetary magnetic field data serve as the input for the BILSTM model.
e The model’s accuracy is assessed for 1-day, 2-day, and 3-day SEP flux forecasts.

e A combination of metrics and correlation analysis between predicted and observed SEP flux is used
to gauge the model’s effectiveness.

By investigating these diverse aspects of solar activity, this research contributes to a deeper under-
standing of the Sun’s dynamics and ultimately improves our ability to predict potentially hazardous
space weather events impacting Earth.

1.3 Outlines

This dissertation investigates several aspects of CMEs, solar radio bursts, and SEP events. It explores
the kinematics of CBFs in the low and middle solar corona, analyzing 26 CBFs associated with SEP
events near Earth, observed between 2010 and 2017, to understand their kinematics evolution. The
analysis utilizes the SPREAdFAST framework to gain statistical insights into the shocks and plasma
parameters of CBFs, contributing to space weather forecasting and SEP event studies (Chapter .
Additionally, a separate study within this chapter presents a method for recognizing and tracking solar
phenomena like CME-driven shock waves using wavelet transform and image filtering. This versatile
method, demonstrated on SDO/ATA telescope observations, holds promise for developing deep-learning
solar datasets. Another collaborative study in Chapter [2)investigates the correlation between geomagnetic
storm intensity and solar and IP phenomena. This research, which utilizes 3D reconstructions of CMEs
via the PyThea framework, highlights the importance of considering CME speed and magnetic structure
orientation for accurate geomagnetic storm strength prediction.

Chapter [3| focuses on solar type III radio bursts by analyzing an event observed on April 3, 2019.
This research, which utilizes multi-wavelength data from LOFAR and PSP alongside PFSS and MHD
models, successfully identifies and characterizes 16 type III radio bursts. It determines their frequency
drift, electron beam speeds, and a common origin within a short timeframe. The study also provides
valuable insights about plasma conditions along the bursts’ trajectories, revealing discrepancies compared
to theoretical expectations.

Chapter [4 delves into SEP events. One collaborative study models the acceleration and transport
of SEPs during coronal shock events using telescopic observations and dynamic models. This research,
conducted through the SPREAdFAST framework, simulates SEP acceleration and heliospheric connec-
tivity, validating results with observations at 1 AU. Another study in this chapter addresses the crucial
need for forecasting the integral flux of SEPs which is critical for safety in communication, navigation,
space exploration, and aviation. This research develops SEP forecasting models using a BiLSTM neural
network model based on various input parameters. The model’s effectiveness is validated through out-
of-sample testing and benchmarking against other existing models. Finally, Chapter [§] summarizes the
key findings presented throughout the dissertation.
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Chapter 2

Remote Observations
Early-stages and Later-stages of Eruption

This chapter introduces work I have performed on three topics related to extreme ultraviolet (EUV)
waves and coronal mass ejections (CMEs). The first, central to my research, investigates the kinematics
of coronal bright front (CBFs) in both the lower and middle/outer coronas while also exploring the
coronal plasma conditions during these eruptions. The remaining two topics explore points to which I
contributed. The first, testing and debugging Wavetrack, a new open-source Python library designed by
Stepanyuk et al.| (2022)) for flexible detection and tracking of various solar features using a combination
of multi-scale wavelet transforms and filtering techniques. The second point was led by Miteva et al.
(2023) and investigates the link between reconstructed 3D CME models and geomagnetic storm intensity,
highlighting the importance of accurate 3D modeling for space weather forecasting. I will present the
results of each topic individually, followed by a combined discussion and concluding remarks at the end
of the chapter.

2.1 Introduction

Coronal Mass Ejections (CMEs) stand out as one of the prevalent expressions of solar activity. Typically
discerned through white light observations (Vourlidas et al.|2003; [Zhang & Dere|[2006} |Bein et al.[|2011)).
CMEs exhibit various facets in ultraviolet and radio wavelengths (Bastian et al.|[2001} [Veronig et al.
2010). Notably, the early phases of CMEs are effectively observed in EUV light, facilitated by instruments
like the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (Lemen et al.
2011; Pesnell et al.|[2012, SDO). These eruptions may induce shock waves in the solar corona when
their propagation velocities surpass the local speed of information, typically represented by the fast
magnetosonic speed. Such shock waves are visibly identified in EUV as EUV waves (Thompson et al.
1998)), also acknowledged as Coronal Bright Fronts (Long et al.|[2011, CBF's).

CBFs are disturbances that propagate over significant portions of the solar disk and off the solar limb.
These waves can reach speeds faster than the local characteristic speed in the solar corona, transforming
into shock waves. They are primarily driven by CMEs or solar flares (Thompson et al.[|{1998; |Veronig
et al.2010; |Vrsnak & Cliver|2008; Magdaleni¢ et al. 2010b; [Nindos et al.|2011). In both radio and
white-light observations, CBF's often appear as dome-shaped structures moving at speeds on the order of
several hundred km s~ (Pick et al.|2006; Nindos et al.|[2008; Thompson & Myers 2009). These structures
consist of piled-up plasma with higher density, making them appear brighter in white-light images.

Recent studies have further elucidated the characteristics of CBFs both on the solar disk and off
the limb, confirming their wave-like nature (Nitta et al|[2013} [Long et al[/2011} Olmedo et al.[|2012]).
Coronagraph observations, such as those obtained from the Large Angle and Spectrometric COronagraph
(LASCO) instrument onboard the Solar and Heliospheric Observatory (SOHO) spacecraft (Domingo et al.
1995)), have extended the investigation of shock waves beyond 2.5 R (Vourlidas et al.|2003), while EUV
observations have provided evidence linking CMEs and EUV waves (Patsourakos & Vourlidas |2009)).
Nevertheless, the appearance of shock waves in EUV observations is not yet fully understood (Kozarev
et al[|2011). Emission measure modeling using the EUV channels of the AIA instrument allows for
the estimation of temperature and density changes in the wavefront’s sheath (Kozarev et al.[2011). By
employing multi-wavelength observations from the SOHO/LASCO and SDO/ATA instruments, valuable
information about the relationship between white-light coronagraph observations and EUV observations
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Table 2.1: List of the CBF events with their associated flares and CMEs.

ID Event Flare Flare Flare EUV EUV Source Source CME VoMmE AW
Date Start Max Class Wave Wave X (") Y (") on
(UT) (UT) Start End
(UT) (UT)
0 2010/06/12  0:30 0:57 20 0:55 1:19 633 390 1:32 486 119
1 2010/08/14  9:38 10:05 4.4 9:30 10:08 697 -26 10:12 1205 360
2 2010/12/31  4:18 4:25 1.3 4:15 5:01 799 246 5:00 363 45
3 2011/01/28  0:44 1:03 13 0:45 1:59 949 218 1:26 606 119
4 2011/03/07 19:43 20:12 37 19:31 22:59 614 553 20:00 2125 360
5 2011/05/11  2:23 2:43 0.81 2:20 2:35 785 399 2:48 745 225
6 2011/08/04  3:41 3:57 93 3:43 4:20 546 200 4:12 1315 360
7 2011/08/08 18:00 18:10 35 17:45 18:43 812 215 18:12 1343 237
8 2012/03/07  1:05 1:14 130 0:00 0:40 -475 397 1:30 1825 360
9 2012/03/13 17:12 17:41 79 17:03 17:44 804 352 17:36 1884 360
10 2012/07/23 u u u 2:09 2:48 912 -243 2:36 2003 360
11 2013/04/21 u u u 6:35 7:35 937 181 7:24 919 360
12 2013/05/13 15:48 16:05 280 15:44 16:20 -927 186 16:08 1850 360
13 2013/05/15  1:25 1:48 120 1:06 1:50 -852 199 1:48 1366 360
14 2013/05/22 13:08 13:32 50 12:33 13:20 875 238 13:26 1466 360
15 2013/06/21  2:30 3:14 29 2:31 3:21 -869 -268 3:12 1900 207
16 2013/10/25  7:53 8:01 170 7:53 8:29 -914 -158 8:12 587 360
17 2013/12/12  3:11 3:36 0.22 3:03 3:33 750 -450 3:36 1002 276
18 2013/12/28 17:53 18:02 9.3 17:10 18:00 942 -252 17:36 1118 360
19 2014/07/08 16:06 16:20 65 16:06 16:51 -767 163 16:36 773 360
20 2014/12/05  5:28 5:37 2.1 5:42 6:21 872 -366 6:24 534 172
21 2015/05/12 2:15 3:02 2.6 2:18 2:49 960 -192 2:48 772 250
22 2015/09/20 17:32 18:03 21 17:28 18:11 660 -429 18:12 1239 360
23 2015/10/29 u u u 2:13 2:52 951 -167 2:36 530 202
24 2015/11/09  12:49 13:12 39 12:51 13:27 -626 -229 13:25 1041 273
25 2017/04/01 21:35 21:48 44 21:31 22:19 761 308 22:12 516 115

of CMEs has been uncovered, shedding light on the properties of CBFs closer to the Sun (Warmuth
2015)). Factors such as the presence of nearby active regions or coronal holes can distort the initial
morphological shape of CBFs (Ofman & Thompson![2002; Mann et al.|2003; [Piantschitsch et al.||2018)),
and a connection between CBFs and chromospheric disturbances known as Moreton waves has been
established (Thompson et al.|[1999).

In this study, I focused on 26 CBF events up to ~ 17 R by combining observations and modeling tools
from the Solar Particle Radiation Environment Analysis and Forecasting—Acceleration and Scattering
Transport (SPREAdFAST) framework (Kozarev et al.[2022). My aim is to characterize the kinematics
of the CBF's in the low and middle/outer coronas, and estimate the ambient plasma properties to gain
insights into the relationships between the shock and plasma parameters. In this chapter, I focus on the
kinematics of CBFs, and the SEP aspect will be introduced in Chapter [4]

2.2 FEUYV Observations

We collected data from the SOHO/ERNE instrument, focusing on proton events within the energy range
of 17-22 MeV, from 2010 to 2017. Initially, we obtained a total of 216 events. However, we applied several
criteria to filter the data and arrive at the final list of events for this study. Firstly, we excluded 39 proton
events that were not associated with EUV waves and had no identified CMEs or flares. Additionally,
72 proton events were excluded because they lacked EUV wave associations, despite having identified
CMEs/flares. We also removed 6 events with uncertain EUV waves from our analysis. Furthermore, 37
events were discarded due to immeasurable EUV waves. Moreover, 36 events did not show measurable
shock waves using our method of kinematics measurements. As a result, we proceeded with 26 events that
exhibited measurable CBFs, allowing us to analyze them using our framework. To initiate the analysis,
we utilized image sequences obtained from the EUV channel 193 A of the AIA instrument. These images
had a 24-second cadence and served as the primary input for the SPREAdFAST framework.

The 26 selected events (Table were previously presented in our previous work (Kozarev et al.
2022)). Tableprovides details about the date of the CBF events, the start and end times of associated
flares along with their class, and the source locations on the solar disk in helioprojective Cartesian
coordinates. These coordinates were obtained from the Heliophysics Events Knowledge (HEK) databaseﬂ

Figure depicts the distribution of the CBFs on the Sun using the helioprojective coordinate
system. The mean latitude and mean longitude of the CBF's were calculated as 56.35 and 378.04 arcsec,

1HEK Database: www.1lmsal.com/isolsearch
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respectively. Additionally, the mean latitudes of CBFs in the northern and southern solar hemispheres
were found to be 283.00 and -252.73 arcsec, respectively. As for the mean longitudes, they were -775.71
and 803.11 arcsec on the eastern and western sides, respectively.

CBFs appear relatively dim compared to the background solar disk. We found that channel 193
A was most effective in clearly showing the wavefronts, although channel 211 A proved better in some
cases. Therefore, for each CBF event, we generated a sequence of base-difference images to study the
evolution of CBFs. This involved subtracting the average of 10 images from all consecutive frames, with
each frame separated by 24 seconds.

CBF's appear in ATA channels as quasi-spherical sheaths with brighter wavefronts, often interpreted
as shock fronts (Vourlidas et al|2003; Ontiveros & Vourlidas| 2009; [Kozarev et al|2011; Ma et al.
2011). To analyze their radial and lateral evolution, we applied the Coronal Analysis of SHocks and
Waves framework (Kozarev et al.|2017, CASHeW). This semi-automated technique involves extracting
an annular region from ATA images and mapping it onto a polar projection (Fig. ) Intensity changes
along radial and lateral directions are tracked to measure CBF kinematics. Users can interactively
specify extraction lines and measure CBF positions (Fig. [2.2B). Extracted intensity pixels along the
radial direction (CBF nose) throughout the event’s duration within the AIA FOV are used to create a
height-time plot. The height-time maps, commonly known as J-maps, are employed to determine the
kinematics (Sheeley Jr et al.|1999)). These maps are generated by stacking columns of pixels in a desired
direction from a solar image. The track’s shape on J-maps depends on the feature’s direction and speed,
allowing identification of radial and lateral wave front positions over time Fig. [2.2C).
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Figure 2.1: Distribution of the source location of the CBFs on the solar disk. The blue dots are the
events that we included in Table [2.1] while the orange dots are the events that we did not include in the
table.

Our analysis approximates radial and lateral wavefront positions using J-maps generated for each
event. Assuming symmetrical expansion on both left and right flanks, we treat the waves as spheroids
defined by major and minor axes. Consequently, the radial direction is represented by a single value,
while the lateral direction (parallel to the solar limb) uses two values for measurements in both left and
right directions. However, lateral wave signatures may sometimes be visible in only one direction or be
absent entirely. Due to data limitations, our final sample size is 26 events, prioritizing complete datasets
that exclude events with missing radial, lateral, or combined measurements.
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To extract relevant plasma parameters and perform modeling, we retrieve information on CBFs from
the HEK database and consult Nariaki Nitta’s catalog of coronal waves (Nitta et al. I2013[)E| to obtain
necessary data. With the event list, we employ the SPREAdAFAST framework to calculate kinematics,
infer shock parameters, and determine plasma properties. Detailed summary plots of the modeled events
can be found on the online SPREAdFAST catalodﬂ
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Figure 2.2: Tlustration for the annulus method used to extract kinematic data from AIA images. (A)
shows the full Sun disk with the relevant region highlighted for analysis (green sector). The white box
outlines the ATA FOV. (B) displays the extracted annular region mapped onto polar coordinates, with
the actual data extent marked by the white curve. Black lines indicate the directions used for measuring
radial and lateral motions. (C) shows a stacked plot of intensity along the radial direction, with green
markers highlighting intensity peaks and their corresponding distances from the CBF wavefront. The
white lines represent the time interval during which the CBF is tracked within the AIA FOV. This figure
is curated from (Kozarev et al.[|2017).

To accurately determine the front, back, and peak of the EUV wave at each time step (Fig. ,
we applied several algorithms. Firstly, we utilized Savitzky-Golay filtering (Savitzky & Golay|[1964) to
smoothen the data. Next, we employed local minima/maxima ordering and proximity/intensity metrics
algorithms. These algorithms enabled us to identify the wave positions and extract relevant parameters.
For each CBF event, we manually specified the starting and ending times, indicated by vertical white
lines in Figure [2.3] We also determined the starting and ending height, corresponding to the off-limb
portion of the CBF within the ATA FOV.

By analyzing the intensity values, we defined the CBF positions as the locations with peak inten-
sity at each time step. The front and back of the wave were set at 20% of the peak intensity. To
obtain more comprehensive information about the CBFs, we applied the Levenberg-Marquardt least

2Nariaki Nitta’s Catalog: https://lmsal.com/nitta/movies/AIA_Waves/index.html
3SPREAJFAST Catalog: https://spreadfast.astro.bas.bg/catalog/
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Figure 2.3: J-map plots for the event of May 11, 2011, for the radial direction (middle plot) and the left
and right flanks of the wave in the lateral heliocentric direction (the left and right plots, respectively).
Blue, green, and orange filled symbols are the positions of the CBF front, peak, and back, respectively.
The uncertainty of the average measurements is shown as red bars.

squares minimization (Markwardt||2009)) along with a second-degree bootstrapping optimization tech-
nique . This approach allowed us to fit fourth-order polynomials to the wave positions using
Savitzky-Golay fitting. As a result, we obtained measurements for speeds, accelerations, intensities, and
thicknesses of the waves in both the radial and lateral directions. The thicknesses and intensities are
averages of the values between the peak and back for each time step. Measurements of the heights of
CBF's with respect to the solar disk center were obtained for all the events analyzed in this study. These
measurements were taken at the fastest segment of the leading edge of each CBF's over timeﬂ We also
have measurements of the lateral positions of the CBF front relative to the wavefront (nose) direction.
These were obtained in degrees and converted to km depending on the height of the lateral measurement
above the solar surface.

2.3 Data Analysis and Methods

The Solar Particle Radiation Environment Analysis and Forecasting—Acceleration and Scattering Trans-
port (Kozarev et al/[2022, SPREAJFAST) is a physics-based prototype heliospheric SEP forecasting
system. It incorporates data-driven models to estimate the coronal magnetic field, dynamics of coro-
nal shock waves, energetic particle acceleration, and scatter-based SEP propagation in the heliosphere.
The system is based on the Coronal Analysis of SHocks and Waves framework (Kozarev et al.|[2017]
CASHeW) and provides timely predictions of SEP arrival times, maximum intensities, and SEP fluxes
at various locations in the inner heliosphere. It contributes to space weather requirements, protecting
European Space Agency (ESA) assets, aiding satellite operators, and providing lead times for mitigating
impacts on electronics and humans in space activities.

Summary plots of the J-maps, including estimated positions and errors, can be found in the online
SPREAdJFAST catalog for each event. To create a unified lateral kinematics time series for each event,
we average measurements from both lateral left and right flanks. Additionally, we record the CBF mean
intensity and thickness in both directions. To analyze the kinematic measurements deduced from the
ATA FOV, we apply a Savitzky-Golay fit (Savitzky & Golay||1964)), as described in Kozarev et al.| (2019).
Subsequently, we extrapolate the smoothed radial positions up to ~17 Ry using the analytical CME
kinematics models presented by |Gallagher et al|(2003)) and Byrne et al.| (2013).

Our next step involves developing multiple synthetic geometric shock models, known as the synthetic
shock model (S2M) module, to describe the shock surface at a 24-second cadence. These models rely
on extrapolated radial and lateral kinematic results, as well as the inferred major and minor axes of
the spheroids representing compressive waves. The shock surface is created from the onset of the CBF
until its nose reaches 10 Ry and is then propagated up to 30 R . The propagation is based on the Mag-
netohydrodynamic Algorithm outside a Sphere (MAS) synoptic coronal model’s results. Consequently,
the shock surface samples plasma parameters from the data cube of the MAS model at discrete points,
determined by consecutively crossing magnetic field lines. The MHD data utilized in this study is repre-
sented as a 3D data cube consisting of plasma parameters. To analyze this data, a spheroid model was
propagated through the data cube by scanning it without any direct interaction. At each point within
the data cube, a search was conducted to identify the nearest four neighbors. By employing trilinear

4LASCO CME Catalog: https://cdaw.gsfc.nasa.gov/CME_list/
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interpolation, the values at these points were estimated. By sampling the shock surface, we obtain data
for approximately 1000 field-crossing lines, potentially more depending on the desired resolution. For
each event, the output consists of a set of data structures that describe each shock-crossing field line.
These structures include the shock speed Vipock, plasma density n, shock density jump r, shock upstream
magnetic field magnitude By,44, shock-field angle 0, Alfven speed V4, and Alfven Mach number My4.

To estimate the shock density jump, we follow the method of Kozarev et al| (2017) — we calculate
the differential emission measure (DEM) before and during the event at each shock crossing and each
timestep. The DEM is obtained using the model by |Cheung et al| (2015). We integrate the DEM to
obtain the average density, and take the ratio of densities during and before the event. Typically, the
density jump within the ATA FOV is relatively small, usually below 1.2. However, beyond this region
where observational information is lacking, we assign a value of 1.2, assuming a weak shock. For ease of
analysis, we divide the synthetic shock model into three segments: the cap (representing the shock nose),
Zone 1, and Zone 2 (referring to the shock flanks). This division allows us to examine the distribution
of plasma parameters across different sectors of the shock surface. Figure 2.4 illustrates the evolution of
the synthetic shock model in nine timesteps, with the cap zone colored blue and the shock flanks colored
green and red.

Figure 2.4: Synthetic shock model divided into three segments; the cap zone in blue and the flank zones
are in red and green.

2.4 CBF Kinematics and Geometric Modeling: Case Study
May 11, 2011

In this section, I provide a detailed analysis of a case study event at the low corona region, demonstrating
our method. Additionally, I investigate the plasma parameters along individual shock-crossing magnetic
field lines in the ATA FOV.
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2.4.1 Event Context

The eruption took place on May 11, 2011, at approximately 02:20 UT (Fig. . It originated from an
active region situated in the northwestern sector (N18W52). The event involved a massive shock wave
propelled by a fast partial-halo CME that occurred at 02:48 UT. The CME exhibited a linear speed of
745 kms~', a 2"order speed at 20 R of 776 kms~!, an acceleration of 3.3 m s~2, an angular width
(AW) of 225°, a central position angle (PA) of 320°, a measurement position angle (MPA) of 283°, a
mass of 3.5x10% gram, and a kinetic energy of 9.6x10%° erg. The mass and kinetic energy were uncertain
due to projection effects, as reported by the SOHO-LASCO CME catalog. This was accompanied by a
weak solar flare classified as B8.1 and an eruptive filament, as observed by the 193 A EUV channel of
the SDO/AIA instrument.
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Figure 2.5: AIA running-difference images capture a coronal wave evolving over 9 minutes near the Sun’s
western limb, exhibiting markedly changing intensity and structure as observed in 171, 193, and 211 A.

Furthermore, the eruption was associated with a type II radio burst, which commenced around 02:20
UT. This was observed by the Learmonth spectrogram (25-180 MHz) maintained by the Australian Space
Weather Services and part of the CALLISTO global network. By examining the OMNI databaseﬂ we
found no evidence of a geomagnetic storm occurring within three days from the onset of the eruption.
Nevertheless, an increase in proton fluxes across all energy channels near 1 AU was observed using the
SOHO/ERNE instrument. According to the Wind/EPACT cataloﬂ (Miteva et al.|2016}2017), we found
an SEP event detected by the SOHO/ERNE instrument at the Earth with onset time of 03:39 UT and
a J, of 0.0133 protons/(cm? s st MeV) in the energy channel 17-22 MeV. J, is the peak proton intensity
after subtracting the pre-event level.

50OMNIWeb Database: |https ://omniweb.gsfc.nasa.gov/|
6Wind/EPACT Catalog: http://newserver.stil.bas. bg/SEPcatalog/l
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2.4.2 Low Corona Part

To investigate the kinematics of the CBF event, we employed the CASHeW module within the SPREAd-
FAST framework. As we see in Figure 2.3] the J-maps are displayed, illustrating the radial and lateral
time-dependent evolution of the CBF in gray-scale. Since the wave is assumed to have a dome-like shape,
the lateral direction is divided into left and right flanks. Bright features below the CBF in the J-maps
are likely expanding loops. To estimate the uncertainty in the measurements, we varied slightly the
radial (nose) direction three times. The corresponding positions are depicted in red, while the start and
end times of the CBF are indicated by vertical dashed lines. Additionally, the front, back, and peak of
the CBF are represented by blue down-pointing triangles, yellow up-pointing triangles, and green-filled
circles, respectively.

Figurepresents the time series kinematic results of the shock wave parameters within the SDO/ATA
field of view (up to 1.3 R ). The kinetics of the wavefront, peak, and back are color-coded as red, green,
and blue, respectively. The subpanels from top to bottom display the estimated heliocentric distance,
speed, acceleration, intensity, and thickness of the wave. These parameters are presented for both the
radial (middle panel) and lateral directions (left and right panels).
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Figure 2.6: Time-series kinematics of the CBF parameters for the front, peak, and back positions in
the ATA FOV, with measurement uncertainties shown as small bars over the data points. The horizon-
tal lines in the speed and acceleration panels denote the mean speeds and accelerations for the wave
front, peak, and back with respective colors. The left and right columns represent the lateral kinematic
measurements in the left and right flanks of the wave, respectively. The middle column represent the
kinematic measurements in the radial direction.

Analysis of Figures and reveals that the coronal wave was asymmetric in shape. The time-
dependent evolution of the angular distance differed slightly between the left and right flanks. In Fig-
ure the right flank (towards the solar equator) of the wave appeared for a little bit longer time,
allowing the algorithm to capture it with a higher number of measurements until approximately 02:29
UT, same as for the radial direction. In contrast, the left flank (towards the solar pole) had fewer
measurements available.

The coronal wave’s initial appearance was slightly elongated, with an aspect ratio of 0.5. This
indicates a longer major axis, creating a degree of asymmetry. At 02:25:31 UT, a striking change
occurred: the wave became perfectly circular, achieving an aspect ratio of 1. This signifies equal lengths
for both axes, resulting in a symmetrical shape. However, this transformation was short-lived. The
wave’s morphology shifted again, becoming increasingly flattened. This signifies a growing minor axis
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compared to the major one, leading to an over-expansion of the wave along its minor axis. In this study,
the aspect ratio is defined as the minor axis divided by the major axis of the wave’s geometric surface. A
value of 1 represents a perfectly symmetrical wave, while values greater than 1 indicate over-expansion
along the minor axis. Conversely, values less than 1 point towards elongation along the major axis,
reflecting a more radial expansion.

Regarding the radial direction, the event duration spanned from approximately 02:21 to 02:28 UT. The
shock wave exhibited an average speed of approximately 420.46 km s~', while the average acceleration
was around 463.92 m s~2, calculated as the mean of the front, peak, and back sides of the wave. For
the left flank in the lateral direction, the event duration spanned from around 02:21 to 02:28 UT. The
average speed and acceleration were approximately 270 km s~!and -400.62 m s~2, respectively. For the
right flank in the lateral direction, the event duration spanned from around 02:21 to 02:30 UT, lasting
for one minute longer than the left flank. The average speed and acceleration were approximately 500.97
km s~!and -297.18 m s~ 2, respectively.

Comparing the lateral directions, the wave’s sheath on the right flank was approximately six times the
thickness observed on the left flank, while the radial direction exhibited a thickness roughly half that of
the left flank. Notably, the peak speed in the radial direction was lower than that in the lateral direction;
right flank, suggesting that the shock wave experienced compression in the direction of propagation, while
expanding laterally to a greater extent than radially. Table provides a summary of the statistical
results.

To further explore the shock and plasma parameters at different sections of the coronal wave, we
divided the shock surface into three segments: the Cap zone (shock nose), Zone 1, and Zone 2 (the shock
flanks). This division is illustrated in Figure

Table 2.2: Mean values and their standard deviation of the wave parameters in the radial direction and
the lateral direction for the left and right flanks, at the front, peak, and back sides of the wave for the
event occurred on May 11, 2011, in the SDO/ATA FOV.

Parameter Direction Front Peak Back
Lat. Left 218.46 + 9.04 297.46 + 5.45 293.94 4+ 9.04
< speed > km s~} Radial 427.46 £+ 51.85 433.11 + 82.86 400.81 + 83.78
Lat. Right 494.69 + 0.00 509.25 + 1.02 498.97 £+ 9.21
Lat. Left | -414.62 + 227.23 | -401.46 4+ 164.62 | -385.77 & 227.23
< accel. > m s™2 Radial 147.41 £ 1009.19 | 758.97 + 1287.65 | 485.38 4+ 1365.80
Lat. Right -415.04 + 0.00 -209.81 + 22.32 | -266.68 + 250.80
Lat. Left 250.60 + 5.90
< intensity > DN Radial 403.34 + 143.30
Lat. Right 489.04 + 2.86
Lat. Left 0.07 &= 0.00
< thickness > R Radial 0.04 £ 0.01
Lat. Right 0.09 4+ 0.00

We summarize the results for the three segments in Table to further investigate the shock and
plasma parameters in different sections of the coronal wave. Notably, the mean shock speed at the flanks
was higher than that at the Cap zone. We did not observe significant variations in the magnetic field
across the different segments, indicating a relatively homogeneous magnetic structure. The shock density
jump exhibited consistent values across all three segments.

In [Kozarev et al.| (2022) we investigated shock-crossing magnetic field lines during this event, and key
plasma parameters were analyzed up to 10 R . The study, utilizing DEM analysis, revealed consistent
results with weak coronal shocks. Notably, the density jump within the ATA FOV was generally small,
below 1.2, aligning with previous research. Beyond this view, lacking observational data, the density
jump was set to 1.2. By inspecting the parameter evolution over all shock-crossing field lines, we found
that the shock-field angle (0pn) and magnetic field amplitude (| B]) consistently decreased over time and
radial distance.

The crucial parameter for diffusive shock acceleration (DSA), 0pn, was further detailed, highlighting
its time-dependent distribution across the entire spheroid surface. Notably, there was a significant
decrease in gy angle within the first 50 minutes of the event. Additionally, dividing the spheroid into
distinct regions revealed nuanced variations, with the cap/nose region exhibiting the lowest 85 values,
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Table 2.3: Mean, median, and standard deviation of the shock parameters output, from the interaction
of the S2M spheroid with the MAS MHD model results, for the shock’s cap and flanks and for the whole
shock surface, for the event on May 11, 2011.

Segment Parameter Statistics
Mean Median Stdv
All Vewmockx kms— Y 57777 57839 72.79
N ° 70.06 0.63 44.83
Buyrag G 0.046 0.038  0.070
Density Jump 1.193 1.188  0.185
Cap Vermockx kms~' 555.18 550.86  42.46
Osn ° 19.37 3.61 25.51
Buyrag G 0.046 0.036  0.070

Density Jump 1.193 1.188  0.015

Zone 1 Vsmocrx kms—t 613.69 609.32 59.42
0N ° 6.46 0.21 50.92

Buyac G 0.045 0.045  0.066

Density Jump 1.190 1.187  0.008

Zone 2 Vsmockx kms~' 631.37 614.23  73.07
0N ° 0.10 0.51 10.61

Buyac G 0.046 0.029  0.071

Density Jump 1.194 1.188  0.016

while zone 2 consistently displayed higher values above 60°. All dynamic spectra for individual events
are accessible on the SPREAdFAST catalog Webpageﬂ

2.4.3 Middle/Outer Corona Part

We collected complementary measurements from the SOHO/LASCO instrumemﬁ in order to expand the
analysis of EUV waves’ kinematics in the middle/outer corona. These measurements specifically provide
the radial distance of the CME leading edge associated with the coronal wave over time, which is referred
to as the height-time profile of the CME.

Figure displays the extended measurements of the EUV waves in the SOHO/LASCO FOV,
reaching approximately 17 Ry . To analyze the height measurements, 1 applied the models of CME
kinematics proposed by |Gallagher et al.| (2003) and [Byrne et al.| (2013). Through a comparison, I
determined that the model by (Gallagher et al. (2003) provided a better fit with a x? value of 0.13.
Examining the bottom panel of the figure, I observe the residuals (i.e. the differences between the actual
measurements and the fits) for both models. It becomes apparent that the residuals are generally lower
for the Gallagher model when compared to the Byrne model. The efficacy of the Gallagher fitting model
in accommodating both ATA and LASCO measurements is underscored by Figure This alignment
underscores the model’s proficiency in capturing the early stages of the solar event, particularly near the
Sun. The extended measurements of the 26 EUV waves in the SOHO/LASCO FOV up to ~30 Rg can
be found in the Appendix [A]]

Further insights can be gained by examining Figure 2.8 which demonstrates that the wave experi-
enced a period of rapid acceleration between approximately 02:25 and 03:15 UT within a distance of
approximately 5 Ry from the Sun. This behavior aligns with the fluctuations in wave acceleration de-
picted in Figure At the same time, the wave speed had a sharp decrease from around 727 km s~ !to
570 km s~! within an hour. Subsequently, the wave speed gradually increased over the following 3 hours,
covering a distance of around 15 R and they it plateaued at approximately 723 kms~!.

2.5 Statistical Study

I present a comprehensive statistical analysis of the kinematic characteristics and plasma parameters of
coronal wave events observed in the ATA and LASCO FOVs. An overview of the statistical parameters
related to shock characteristics, including wave speed, intensity, and thickness in the ATA FOV, is

"SPREAJFAST Catalog: https://spreadfast.astro.bas.bg/catalog/
8LASCO CME Catalog: https://cdaw.gsfc.nasa.gov/CME_list/
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Figure 2.8: Extrapolated radial kinematics for the event occurred on May 11, 2011, based on the ballistic
model of |Gallagher et al.| (2003)) up to 17 Rg, .

presented in Table The wave speeds are expressed in km s~!, wave accelerations are in km s~2,

wave intensity in arbitrary units, and wave thickness in R, , as the data have undergone multiple stages
of processing.

Upon analyzing the data, I observed that the waves generally exhibited higher speeds, higher ac-
celeration, lower mean intensities, and lower thickness in the radial direction compared to the lateral
direction. This suggests that the waves were somewhat elongated in their early stages near the Sun,
potentially due to the coronal conditions, including plasma densities and magnetic field strength and
structure.

To illustrate the evolution of EUV waves’ kinematics in the ATA FOV, I present Figure [2.9] which
provides a cumulative view of dynamic spectra for all events. The figure showcases the parameter
distribution as a function of distance for shock speed, acceleration, wave intensity, and wave thickness
for the radial direction (the middle column) and the lateral directions; the left and right flanks in left
and right columns, respectively. The colors in the figure represent the total count in each bin at each
radial position step, or each position angle step.

Consistent with our expectations, the speed and intensity panels exhibit a decline in values as a
function of distance. As the waves propagate away from the Sun, the wave drivers lose momentum
through interactions with the medium, leading to a decrease in speed. Additionally, plasma densities
decrease with distance, resulting in a corresponding decrease in wave intensity.

Table 2.4: Statistics of the EUV wave kinematics in the SDO/AIA FOV for the 26 events. LL and LR
refer to the lateral left and right flanks, respectively. Rad refer to the radial front direction.

Speed (kms~1) Accel. (km s72) Intensity (DN) Thickness (R )
Aspect ratio LL Rad LR LL Rad LR LL Rad LR LL Rad LR
Max 2.00 1574.81 2053.73 983.58 28.19 81.01 13.89 1348.87 2431.95 149845 9.600 0.185 6.100
Min 0.84 2.11 40.30 230 -35.24 -81.01 -9.89 0.53 0.17 150.30  0.027 0.018 0.022
Mean 1.87 316.17  413.60 264.50 -0.15 0.98 0.13 43899 68146 44246 0.715 0.059 0.231
Median 2.00 284.77  349.32 21632  0.03 0.37 0.11 337.96  425.23  389.06 0.102 0.055 0.076
Stdv. 0.33 261.01 336.11  191.13  5.53 11.08  2.05 292.26 592.78  227.10 1.721 0.030 0.776

To investigate the bulk behavior of the modeled plasma above and at the shock surface, we sampled
over 1000 field lines from the 26 events. The resulting histograms, shown in Figures [2.10} reveal correla-
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tions between various pairs of parameters. I investigated the correlations between five parameters — the
shock-field angle (THBN), the coronal magnetic field (BMAG), the plasma density (DENSITY), the
Alfven speed (VA), the shock speed (VSHOCK), and the shock density jump (SHOCKJUMP).

The histograms show that there are weak to moderate correlations between some of the parameters.
For example, there is a moderate positive correlation between BMAG and DENSITY, and a moderate
positive correlation between BMAG and VA. These correlations suggest that there may be some underly-
ing physical processes that connect these two parameters. The positive correlation between BMAG and
DENSITY could be due to the fact that stronger magnetic fields can compress the plasma, leading to
higher densities. The negative correlation between BMAG and VA could be due to the fact that stronger
magnetic fields tend to speed up the Alfven waves.

In addition to the anticipated correlations between the Alfven speed with magnetic field and density,
we discovered a highly skewed correlation between magnetic field values and the modeled shock density
jump, as well as between magnetic field magnitude and density. The negative correlation between BMAG
and SHOCKJUMP indicates that stronger coronal magnetic fields are associated with smaller density
jumps across the shock surface. In other words, weak magnetic field correlates well with stronger shocks.
This could be due to several possible mechanisms. For instance, stronger magnetic fields exert higher
pressure, potentially resisting the compression of plasma by the shock wave, leading to a smaller density
increase across the shock front. In addition, as mentioned earlier, stronger magnetic fields might lead
to faster Alfven waves, allowing the plasma ahead of the shock to react and reduce the density jump.
These correlations will be further explored to establish a more definitive connection and to parameterize
the shock density jump.

We also aim to investigate the event-averaged modeled plasma parameters and establish the observed
connections between these parameters throughout entire events. To achieve this, I computed the mean,
maximum, and summed values of the parameters for each event. The analysis revealed a set of parameter
pairs that exhibit promising relationships suitable for parameterization. Among these pairs, we selected
six representative cases for further examination.

The scatter plots presented in Figure depict the chosen modeled parameter pairs. From left to
right, top to the bottom, I plotted the logarithm of the summed values of the shock-field angle 6N
versus the logarithm of the summed values of the absolute coronal magnetic field (A), the logarithm of
the summed values of g versus the mean values of the shock speed (B), the logarithm of the summed
values of O versus the logarithm of the summed values of the shock speed (C), the logarithm of the
summed values of fpy versus the logarithm of the summed values of the shock density jump (D), the
mean values of the absolute magnetic field versus the mean values of the shock speed (E), the logarithm
of the summed values of the Alfven speed versus the mean values of the shock speed (F), the mean
values of the shock speed versus the mean values of the density jump (G), and finally the logarithm of
the summed values of the Alfven speed versus the mean values of the density jump (H).

To determine the best-fitting equations, I tested several models and found that power fits yield the
most accurate results in this particular case. The graphs illustrating the fit parameters and the x2 are
provided for reference.

The analysis of eight figures examining shock dynamics in EUV wave events revealed significant
findings. In Figure (A), a weak positive correlation between coronal magnetic field strength and shock-
field angle was observed, suggesting a nuanced relationship influenced by factors beyond magnetic fields.
Figure (B) showcased a weak negative correlation between shock-field angles and mean shock speeds,
hinting at a connection between complex shock geometries and slower wave speeds. In Figure (C),
there appears to be a weak negative correlation between the logarithm of the shock-field angle and the
logarithm of the sum of shock speeds, which is indicated by the faintly downward-sloping trendline.
This hints at a slight tendency for larger shock-field angles to be associated with slower shock speeds.
Figure (D) displayed a moderate positive correlation between shock density jump and shock-field angles,
suggesting potential interactions between shock wave geometry and density variations.

Meanwhile, Figures (E), (F), (G), and (H) delved into relationships between solar coronal magnetic
field strength, shock speeds, Alfven speeds, and shock density jumps, revealing negative, lack of clear, and
lack of consistent correlations, respectively. These findings emphasize the intricate nature of solar coronal
shock dynamics, with multiple influencing factors contributing to observed correlations and scattering in
the data. The comprehensive analyses underscore the need for more events and a nuanced understanding
of various factors when interpreting the complexities of shock phenomena in the solar corona.

It is important to note that some outliers exist, but they do not undermine the overall correlation
patterns. In future work, we will focus on developing and testing parameterizations for these identified
connections in order to establish a set of synoptic MHD parameters that correspond one-to-one with the
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parameters we measure, such as shock density jump and shock speed. By accomplishing this, we will

enhance the representation of shock parameters even in the absence of actual compressive waves.
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Figure 2.11: Scatter plots of 8 coronal plasma-parameter pairs that exhibit parameterizable relationships.
The VSHOCKMEAN is filtered to take only events with speeds <4000 km s—!.

Figure depicts the temporal evolution of the mean shock density jump (r) for the 26 events
within the studied sample. Each data point represents the average value across all shock-crossing points
for the respective timestep and event. All modeled events were constrained to 50 timesteps, each lasting
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24 seconds. Consequently, the graph illustrates the mean aspect ratio for all events at each timestep.
The profile exhibits an initial relatively low value of 1.2, gradually rising to nearly 1.4 before gradu-
ally returning to 1.2. The semi-transparent blue shading denotes the standard deviation error at each
timestep.
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Figure 2.12: Time profile of the mean shock density jump for the 26 in-sample historical events studied
with SPREAdFAST.

Finally, in Figure 2:13] I present the computed mean value of time-dependent aspect ratios for all
events within our study. The analysis encompasses events confined to 50 timesteps, each lasting 24
seconds. Consequently, the graph illustrates the average aspect ratio across all events at each timestep,
revealing a noticeable decrease in aspect ratio. This profile serves as a foundational reference for subse-
quent modeling phases in SPREAdFAST.

2.6 Wavetrack: Automated Recognition and Tracking of Solar
Eruptions

2.6.1 Overview

Solar eruptive events encompass a myriad of intricate phenomena, including flares, filament eruptions,
CMEs, and CME-driven shock waves. The principal drivers of SEPs are acknowledged to be CME-
driven shocks within the corona and interplanetary space. This acceleration primarily occurs through the
diffusive shock acceleration (DSA) and shock drift acceleration (SDA) processes (Reames|[2021). Efforts
have been devoted to characterizing and modeling SEP acceleration under ideal conditions (Vainio &
Laitinen| [2008; [Sokolov et al. [2009; Kozarev et al[/2013). Recent endeavors have shifted towards the
development of more realistic CME-shock and SEP acceleration models, incorporating observational
data (Vourlidas et al.||2012; Kwon et al.||2014; Kozarev et al.|[2015 2019)).

Understanding the efficiency and spatial distribution of SEP acceleration necessitates a comprehensive
grasp of CME-shock interactions with three-dimensional coronal fields Rouillard et al. (2016]). The
modeling of DSA requires the deduction of shock front shapes from observations, given the profound
impact of the local magnetic field-shock angle on acceleration |Guo & Giacalone| (2013)). Moreover, the
lateral over-expansion of CMEs early in their evolution modifies the compressive front [Bein et al.| (2011]);
Temmer| (2016), necessitating improvements to the idealized shock surface descriptions used in modeling
(Vourlidas et al.|2012; Kwon et al.|[2014; Rouillard et al.|2016).
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Figure 2.13: Time profile of the mean aspect ratio of the 26 historical events studied with SPREAdFAST.

The utilization of EUV imaging, facilitated by instruments such as the Extreme Ultraviolet Im-
ager (EUVI) onboard the Solar Terrestrial Relations Observatory (Wuelser et al| 2004, STEREO)
and SDO/AIA (Lemen et al|[2012)), enables the characterization of shocks. The high resolution and
multi-wavelength coverage of these instruments permit the time-dependent modeling of SEP accelera-
tion (Kozarev & Schwadron|2016; Kozarev et al|2017, 2019). With the burgeoning demand for Big
Data, solar feature detection has become more automated, employing fundamental techniques reviewed
by |[Aschwanden| (2010) and applied to features at various heights (Pérez-Sudrez et al|[2011). Some of
these techniques are tailored to detect specific solar features, such as sunspots and active regions
. EUYV wave recognition and tracking pose challenges due to their weak intensity in proximity
to other features. While algorithms for this purpose exist, their complexity is notable
|& Berghmans 2005} Verbeeck et al.||2014; Long et al.||2014} Ireland et al|2019). Specifically, CorPITA
(Long et al.|[2014) and AWARE (Ireland et al|[2019) fit shapes to flare-centered wave sectors but are
constrained to the solar disk. This study, led by |Stepanyuk et al.| (2022)), introduces Wavetrack, a flexible,
object-oriented Python library designed for general solar feature detection and tracking. Wavetrack inte-
grates multiscale representation (]Starck & Murtagh”2002|), A trous wavelets (]Akansu||1991|; |Holschneider|
, and filtering at its core. Notably, Wavetrack has the capability to generate training sets for
machine learning-based recognition.

Machine learning (ML) applications are gaining prominence in solar physics, spanning areas such as
EUV irradiance mapping (Szenicer et al[2019), solar flare prediction (Li & Zhul2013)), and magnetic flux
generation . However, the potential of data-driven CME tracking is hindered by limited
training sets. Wavetrack addresses this limitation by facilitating the conversion of results into annotated
sets. Central to Wavetrack is a method for general feature recognition and tracking, implemented as an
accessible, open-source Python library. Its modular structure allows the configuration of applications by
adjusting a few threshold parameters. The calculation scheme integrates multiscale data representation
(Starck & Murtagh/[2002) and the A trous wavelet transform (Akansu/[1991; Holschneider et al.[1989),
supplemented by image filtering techniques for noise removal and edge enhancement.

Wavetrack distinguishes itself from existing algorithms by offering a flexible framework for detecting
various solar features in EUV, white light, and other observations. Its modular design facilitates the gen-
eration of training sets for ML approaches, supporting automated analysis for deriving new insights from
the extensive solar data. The A trous wavelet transform employed by Wavetrack enables the isolation
of features at different scales, effectively separating noise from the signal and enhancing edges. Wavelet
coeflicients encode the multiscale structure efficiently, with thresholding suppressing noise by zeroing
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insignificant values. Further refinement of the signal is achieved through filtering techniques. Morpho-
logical operations, such as opening, eliminate artifacts and smooth edges, while contrast enhancement
sharpens edges and boundaries. The resulting output highlights features while suppressing noise.

Wavetrack strategically applies these techniques to recognize faint features like EUV waves and tracks
them by identifying significant coefficients across wavelet scales. This approach avoids pre-processing
steps, such as difference images, that may introduce false signals. The adaptability of Wavetrack is a key
feature, allowing users to build specific applications by adjusting parameters such as thresholds and filters.
Importantly, the original data remains unaltered, with only processed copies utilized for feature detection
to prevent information loss. Wavetrack, offered as an open-source tool, invites community involvement,
enabling users to contribute modules, optimizations, and new techniques. This collaborative effort is
poised to enhance solar data analysis capabilities in the era of Big Data, facilitating the discovery of new
knowledge to deepen our understanding of the dynamic Sun.

In the realm of solar image processing and analysis, diverse techniques contribute significantly to
understanding solar phenomena. This section delineates the methods employed, encompassing wavelet
transform, image filtering, feature detection algorithms, machine learning, and solar feature tracking.

¢ Wavelet Transform: The application of the A trous wavelet transform’ constitutes a fundamental
multi-scale data representation concept widely employed in solar image analysis. This method
facilitates the extraction of features at various decomposition and intensity levels, contributing to
the comprehensive understanding of solar events.

e Image Filtering: Various image filtering techniques play a crucial role in enhancing and extracting
specific features within solar images. These techniques, adept at detecting and tracking phenomena
like CME shock waves and filaments, contribute significantly to the analysis of solar dynamics.

e Feature Detection Algorithms: Automated algorithms, leveraging image processing techniques,
are instrumental in detecting and identifying diverse solar features, including sunspot groups, active
regions, and eruptive fronts. These algorithms enhance the efficiency of solar feature identification
across different types of observations.

e Machine Learning: The integration of machine learning methods, such as Convolutional Neural
Networks (CNNs) and Generative Adversarial Networks (GANs), signifies a contemporary approach
in solar image analysis. These methods find application in tasks ranging from predicting solar flares
to generating magnetic flux distributions, enriching the analytical capabilities of solar researchers.

e Solar Feature Tracking: An essential facet of image analysis involves tracking the evolution
of solar features over time. Tracking algorithms, instrumental in monitoring the movement and
changes in features like CMEs, filaments, and EUV waves, contribute significantly to understanding
dynamic solar processes.

The present study leveraged observations from the ATA instrument on the SDO. The ATA instrument,
functioning as an EUV imager, offers high-resolution and high-temporal observations, particularly useful
for detecting and characterizing large-scale shocks known as EUV waves of CBFs. Focusing specifically
on the ATA channels centered on 193 and 211 A wavelengths, the study utilized a standard AIA pipeline
with the SunPy package to process the 193 A data.

The processing involved the creation of base images through the averaging of a series of images
preceding the eruption. Subsequent construction of base difference images, achieved by subtracting the
base images from the current raw image sequence, facilitated the enhancement of intensity changes caused
by CBF's while mitigating static details and reducing noise. Given the typically dim nature of CBF's in
EUV images, the study pre-selected a segment of the dynamic range where the shock wave is revealed
from the base difference image of the sequence. The observations obtained from the SDO/ATA telescope
were instrumental in studying and tracking the CBFs and their temporal evolution, providing essential
data for analyzing the spatial and temporal relationships of CBFs and other solar dynamic features.

2.6.2 Image Filtering Techniques

Specific image filtering techniques, including thresholding, wavelet decomposition, and segmentation,
formed the cornerstone of the method. Initial thresholding applied to the absolute values of pixels in the
base difference images narrowed the dynamic range, concentrating on the segment containing the object
of interest.
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Subsequent to thresholding, the base difference images underwent A trous wavelet decomposition
into multiple scales. Each wavelet coefficient underwent relative thresholding based on the statistical
distribution of pixel intensities at each decomposition level. The segmentation process yielded object
masks for each time step, subsequently multiplied by the original data to reveal the intensity of different
parts of the object.

Given the variations in statistical distributions of pixel intensities in base and running difference
images, tailored approaches were applied. In base difference images, pixel intensities were constrained to
a specific segment, focusing on the object of interest, such as a CBF. Running difference images, employed
to identify eruption initiation, depended on the specific features and objects under observation.

The A trous wavelet transform, constituting a multi-scale data representation, significantly con-
tributed to the recognition and tracking of solar images. This hierarchical decomposition enabled the
extraction of specific objects and their masks from imaging observations, facilitating their tracking and
temporal evolution. The A trous wavelet decomposition enhanced the clarity and intensity of faint fea-
tures like EUV waves, offering a flexible framework applicable to various solar phenomena across different
wavelengths. This method emerges as a valuable tool for comprehensively analyzing and understanding
the dynamics of solar features, including CME shock waves and filaments.

The study introduced the Wavetrack package, designed for automated detection and tracking of
dynamic coronal features in solar observations. Utilizing wavelet decomposition, feature enhancement
and filtering, and object recomposition, Wavetrack identified and tracked features such as CBFs and
eruptive filaments. This object-oriented Python framework, adaptable to both on-disk and off-limb
features, enables tracking of features that bifurcate over time.

2.6.3 Wavetrack for Coronal Wave and Filament Tracking

In tracking coronal waves, Wavetrack utilized wavelet decomposition, feature enhancement, and filtering
techniques. The A trous wavelet decomposition method enhanced faint features like EUV waves, cap-
turing different scales of features through convolutions. Automated feature recognition, incorporating
intensity thresholding, image posterization, median filtering, segmentation, and intensity level splitting,
identified and isolated coronal wave features. The output comprised time-dependent pixel masks, rep-
resenting the tracked coronal wave, applicable to generating final feature maps for both on-disk and
off-limb features.

For filament tracking, Wavetrack followed a process involving wavelet decomposition, feature recog-
nition, object mask generation, and image recomposition. The A trous wavelet decomposition identified
different scales of features, and subsequent processing enhanced the features for ease of tracking. Object
masks generated for each time step isolated filament features, and image recomposition from weighted
wavelet scales produced final feature maps. The choice of images, such as inverted AIA 193A images,
depended on source data and filament velocity.

2.6.4 Fourier Local Correlation Tracking (FLCT) Model

To determine the plane-of-sky velocity and speed of solar features, the study employed the FLCT model,
utilizing the Fourier Local Correlation Tracking (FLCT) method. Through the analysis of consecutive
solar images and the tracking of feature motion over time, the FLCT algorithm was applied to object
masks derived from the Wavetrack methodology. The resultant output furnished detailed maps of instan-
taneous velocity, contributing to a deeper understanding of the expansion and evolution of solar features
such as CBFs and erupting filaments.

The overall methodology of the study integrated advanced image processing techniques, incorpo-
rating wavelet transform, image filtering, feature detection algorithms, and machine learning. This
comprehensive approach facilitated an in-depth analysis of solar observations. Notably, the Wavetrack
package emerged as a versatile tool, specifically valuable in the tracking of dynamic coronal features. Its
application provided significant insights into the intricate dynamics governing the solar environment.

2.6.5 Results

The study presents several examples and case studies that demonstrate the application of the Wavetrack
package. Here are some of the examples mentioned:

1. May 11, 2011 event: The Wavetrack algorithm was used to track both an erupting filament and
the coronal bright front it drives. The relationship between the driver and wave was studied using
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the segmented features from ATA 193 A observations.

2. September 29, 2013 event: Wavetrack was applied to a large-scale filament in a slow eruption.
The segmented filament feature was overlaid on the solar corona, and the on-disk feature was
consistently tracked during the eruption.

3. December 12, 2013 event: Wavetrack was used to track the evolution of driven and non-driven
regions of the CBF. The method revealed the relation between the CBF and eruptive features.
These examples demonstrate the versatility of Wavetrack in recognizing and tracking various solar
features, both on the solar disk and off the solar limb.

4. June 07, 2011 event: For this event, the variation in speed between the geometric center and
center of mass is up to 300 km s~!in the radial direction. The angle between the geometric center
and center of mass changes quite a lot as different parts of the compressive front brighten and dim.
However, the angle remains relatively stable, changing only slightly during this event.

Here, I will just focus on the first event since it was accompanied with a CBF. The Wavetrack
methodology was applied to analyze three previously investigated eruptive events observed by the AIA
telescope (Kozarev et al.|[2015 2017)). In the first event on May 11, 2011, an erupting filament induced
a relatively bright CBF on the northwest region of the solar disk near the limb. The second event,
occurring on June 7, 2011, originated close to the southwest limb and featured a large and luminous
CBF. On December 12, 2013, the third event, also originating near the southwest limb, was examined.

Figure illustrates the successfully extracted Wavetrack CBF objects for the event occurred on
Mat 11, 2011, observed at four time points, each separated by 3 minutes. Wavetrack object masks,
when applied to base difference images, were visualized using a blue-green color map overlaid on the
original ATA 193 A observations in grayscale to emphasize the CBFs. Across all three events, Wavetrack
adeptly delineated the extent of the CBF in consecutive time steps, demonstrating its ability to track
the evolution of CBFs both on the solar disk and off the limb. This capability was maintained despite
the distinct pixel distributions and intensities in these two regions.

The application of Wavetrack facilitated the detailed study of the time-dependent shapes and chang-
ing intensity distributions of CBFs, separate from the broader corona. Moreover, Wavetrack effectively
selected CBF objects under different coronal activity states. For instance, despite increased coronal ac-
tivity on December 12, 2013, Wavetrack successfully segmented the CBF. Importantly, the segmentation
of the CBF in the last event highlighted Wavetrack’s capability to track multiple separate parts of the
same feature.

AIA 193 A 2011.05-11 02:22:19 . AA193A2011-05-1102:24:43 . AA193A2011-05-110227:55 . AA193A2011-05-11 02:30:43
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Figure 2.14: Wavetrack images showing progression of a CBF and filament on May 11, 2011. Three
snapshots captured ~ 2 minutes apart track the CBF and filament over time. Credit goes to |Stepanyuk

et ] @072).

The Wavetrack code was further applied to isolate and study the kinematics of CBF's and filaments
in detail. The FLCT method, extensively utilized for estimating horizontal flows in photospheric mag-
netograms, was employed for this purpose. Initially proposed as a cross-correlation technique for precise
motion measurement, FLCT calculates a 2D flow field that best resembles the scalar field between two
consecutive 2D maps.

Figure displays four pairs of consecutive ATA images from the May 11, 2011 event, used as
input for the FLCT algorithm. Each pair, separated by 24 seconds, is strategically chosen to observe
the CBF progression over 6 minutes. The corresponding FLCT results, presented in Figure 2.16] show
the instantaneous plane-of-sky direction of motion and speed of each CBF region. Notably, the results
reveal the uneven expansion of the CBF from the central source. In this event, the thinnest part of the
CBF, strongly driven by the erupting filament, exhibited the fastest motion compared to other regions
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Figure 2.15: Wavetrack images of a May 11, 2011 eruption, with CBF mask applied. Four image pairs
shown, separated by 2 minutes, to track CBF over time. Credit goes to [Stepanyuk et al.| (|2022|).
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on the disk and off the limb. This nuanced information, not discernible from intensity observations
alone, underscores the value of our combined Wavetrack and FLCT approach in elucidating the dynamic
behavior of coronal features.
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Figure 2.16: FLCT model output for four image pairs from Fig. 3. Left: the plane-of-sky velocity
vectors. Right: plane-of-sky speed. Credit goes to Stepanyuk et al. (2022).

In Figure the kinematics of the centers of mass (CM) and geometric centers (GC) of the CBF
were thoroughly analyzed. The research provided detailed metrics over time, including X-axis and Y-
axis positions measured from the projected solar center in solar radii, radial distances in R , and radial
speeds of the GC and CM points in kilometers per second. The angle between the position vectors of GC
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and CM, denoted as (GC — C M), was also calculated in degrees. The results illustrated a clear split
between the radial positions of GC and CM, with a noticeable shift to the south of the CM after 02:26
UT. This shift was supported by the evolution of the angle §(GC — CM), indicating a gradual increase
in the wave’s thickness in the southwest of the front. Despite these positional changes, the speeds of the
GC and CM points varied only slightly, ranging from 0 to 100 km s~!. Additionally, the kinematics of
the center of mass and geometric centers for the May 11, 2011 event are depicted, showcasing the X-,
Y-, and R-positions, distance magnitudes, and angle variations between the two points over time. These
findings offer valuable insights into the dynamic behavior and evolution of the CBF during the specified

solar event.

Kinematics of Geometric and Mass centers of CBF object for 110511_01
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Figure 2.17: Analysis of the center of mass and geometric centers’ motion during the May 11, 2011 event.
The different rows present the X-, Y-, and R- positions for both GC and CM, the distance between GC
and CM in km, and the angle between these two points over time. Credit goes to Stepanyuk et al.| (2022).
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2.7 Geomagnetic Storms: CME Speed De-Projection vs. In
Situ Analysis

This study, led by Miteva et al.| (2023)), examines the relationship between the intensity of geomagnetic
storms (GS) and parameters of solar and interplanetary phenomena. We utilize the recently developed
PyThea framework to reconstruct the 3D geometry of geo-effective CMEs and compare on-sky and de-
projected speed values, focusing on the reliability of the de-projection capabilities. Spheroid, ellipsoid,
and graduated cylindrical shell (GCS) models are used. We collected parameters of the GS-associated
phenomena. Considerable variation in 3D de-projections of CME speeds was obtained depending on
the reconstruction model chosen and subjective observations. Fast CME speeds combined with frontal
magnetic structure orientation when reaching Earth’s magnetosphere proved the best indicator of GS
strength. More accurate estimations of geometry, direction, and de-projected speeds are critical for
operational GS forecasting in space weather prediction schemes.

2.7.1 Overview

Solar eruptive events like CMEs and solar flares (SFs) can generate disturbances that propagate through
interplanetary space and impact Earth’s magnetosphere, leading to space weather effects (Fletcher et al
[2011; Webb & Howard||2012; Klein & Dallal|2017; [Temmer|2021). The electromagnetic radiation from
SF's arrives at Earth first, followed by energetic particles. The plasma clouds of CMEs take longer, from
tens of hours up to a few days, to impact Earth’s environment (Malandraki & Crosby|[2018; |Gopalswamy|
. The temporary disruption of Earth’s magnetosphere and atmosphere due to these solar events
are known as geomagnetic storms (GSs) (Gonzalez et al.|1994} [Saiz et al|[2013} Lakhina & Tsurutani|
. The coupling between solar wind plasma and Earth’s magnetosphere occurs through magnetic
reconnection, enabled when the IP magnetic field turns southward (negative B, component) and impacts
Earth at high speed, as during CMEs (Dungey| 1961} |Akasoful[1981}; [Echer & Gonzalez|[2022). This leads
to increased particle injection into the magnetosphere and atmosphere, causing bright auroral displays.
Drifting electrons and protons also drive the westward ring current responsible for decreases in the
horizontal magnetic field measured by the disturbance storm time (Dst) index (Gonzalez et al.|[1994}
[Saiz et al.|2013; Lakhina & Tsurutani|2016)).

Fast CMEs propagating through IP space (ICMEs) cause the most intense GSs, with sudden Dst
decreases, compared to gradual storms from corotating interaction regions (CIRs) (Tsurutani et al.|1997}
[Zhang et al.|[2007; Wu & Lepping||2016; Borovsky & Denton 2006). ICME shock waves and magnetic
ejecta produce cascading effects in near-Earth space that can disrupt technology (Pulkkinen|[2007).

Earth-directed fast ejecta with strong southward magnetic fields inside are the most geoeffective.
However, single spacecraft observations are limited by projection effects, leading to uncertain CME
speed estimations (Paouris et al.|2021; [Kouloumvakos et al.|2022)). Previous studies found no clear
relationship between GS intensity and solar flare parameters or CME properties like projected speed and
angular width (Samwel & Miteval2023). Furthermore, CME magnetic structure cannot be derived from
remote sensing data. Reliable solar or near-Sun measurements that provide early warnings for potential
GS strength remain lacking.

Accurately predicting when an incoming disturbance will impact Earth requires determining the
arrival time and speed of CMEs. Different portions of these large structures, such as the apex or flanks,
can hit Earth upon arrival at 1 AU. Flank hits may only involve the CME sheath while apex hits
include both sheath and ejecta, leading to different magnetospheric effects (Kay & Gopalswamy|[2018)).
Therefore, deducing CME directionality and 3D geometry is important. To maximize forecast lead time,
these parameters should be estimated as early as possible when the CME emerges in coronagraph fields
of view. In images, CMEs appear as line-of-sight integrated brightness enhancements projected onto the
observing plane (Vourlidas et al|2003; \Jackson et al.[2010]).

Further developing reconstruction techniques to correct for projection effects can improve CME prop-
agation understanding and impact forecasting (Thernisien et al.|[2009; Mierla et al. 2010; [Wood et al.|
2010; Thernisien|2011). Several CME propagation models exist (Odstrcil et al.|[2004; |Xie et al.||2004;
Vrsnak et al.|2013; [Pomoell & Poedts|2018). A study found 2D CME speeds underestimate 3D speeds
by ~20% while 2D widths overestimate 3D widths . Another study showed observer
bias in 3D modeling using graduated cylindrical shell (GCS) model, even for experienced observers
Dbeke et al|2022). CME structure interpretation differs, and line-of-sight integration leads to non-unique
solutions.

This study focuses on deducing CME directionality and near-Sun speeds using new tools like PyThea
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(Kouloumvakos et al.|[2022)). We analyze geo-effective cycle 24 CMEs using multiple reconstruction
techniques by two team members. Comparisons are made between derived parameters and Dst. CME
speed correlations with ICME and IP shock speeds evaluate 3D de-projection value for arrival forecasting.
Other IP parameters are also examined, including shock speed, plasma jumps, and magnetic fields near
L1. We examine the correlation between the intensity of geomagnetic storms and parameters of solar
and interplanetary phenomena. More specifically, we focus on the speed and geometry of CMEs, as
well as interplanetary shocks, as these factors are known to play a significant role in the occurrence and
intensity of geomagnetic storms. The objective of the study is to analyze the correlations between the
intensity of GS and parameters of solar and IP phenomena. The study also aims to perform 3D geometry
reconstructions of geo-effective CMEs using the PyThea framework and compare the de-projected CME
speeds with in situ data.

The event selection process for this investigation commenced with the identification of significant GSs
within Solar Cycle 24 (SC24). These storms were characterized by a Dst index exceeding 100 nT, as per
the classification outlined in |Gonzalez et al| (1994). A total of 25 GSs were identified, with Dst indices
ranging from 101 to 234 nT. Previous studies have explored the solar and IP origins of these GSs in SC24
(Gopalswamy et al.|[2022bf [Qiu et al.|[2022; Besliu-Ionescu et al.|2022; |Abe et al.|2023)). However, the
comprehensive review of all pertinent literature falls beyond the purview of this study. It is noteworthy
that SC24 exhibited a reduced number of GSs in comparison to preceding solar cycles (Selvakumaran
et al.|2016). In our investigation, distinct from prior analyses, our objective was to establish a causal
connection between the identified GSs and potential IP and/or solar phenomena. This approach mirrors
methodologies employed by other researchers (Zhang et al.||2007; |Gonzélez et al.|[2007; |Gopalswamy
et al.[[2008; [Echer et al.[[2013; [Manu et al.[[2022). To delineate the solar and IP drivers, we employed
an association procedure widely acknowledged in the field of space eeather research. The methodology
involves searching for the IP and solar origins of a GS storm within a specific timeframe preceding the
reported GS occurrence at Earth. The sequential steps of our approach are delineated below:

1. Temporal Association with IP and ICME Events: We initiated the analysis with a temporal
association between the GS and recorded IP shocks in the vicinity of Earth. This association was
established within a 1-day period preceding the reported minimum Dst of the GS. A parallel pro-
cedure was employed for the association with ICMESs reported in proximity to Earth. Additionally,
animations from the helioweather archiveﬂ (accessed on 5 April 2023) were utilized to validate
potential ICME and IP shock candidates.

2. Association with CMEs: Subsequently, we extended the association to include CMEs within a
3-to-5 day window prior to the IP (or GS) timing. Information from available solar and IP event
catalogs, as well as animations from the helioweather archive® (accessed on 5 April 2023), was
employed for this purpose.

3. Completion of the Association with SFs: The final step involved associating the GS with
the identification of a SF linked to the previously associated CME. This association was based on
timing (within one hour between the SF onset and CME timing) and location constraints (the SF
location had to align with the solar quadrant reported in the measurement position angle (MPA)
of the CME).

All utilized databases, catalogs, and publicly available lists pertinent to the analysis are summarized
as follows:

GS database (Kyoto)lﬂ (accessed on 5 April 2023);

SF database (GOES)E (accessed on 5 April 2023);

CME catalog (SOHO—LASCO)H (accessed on 5 April 2023);

ICME Wind databasﬂ (accessed on 5 April 2023);

ICME ACE databasﬂ (accessed on 5 April 2023);

9http://helioweather.net/archive/
Ohttps://wdc.kugi.kyoto-u.ac.jp/dstdir/index.html
Hhttp://ftp.swpc.noaa.gov/pub/warehouse/
12CMEcatalog (SOHO-LASCO)
Bhttps://wind.nasa.gov/ICME_catalog/ICME_catalog_viewer.php
Mhttps://izwl.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm
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e IP shock database (Windm (accessed on 5 April 2023).

2.7.2 GSs and IP Phenomena

The findings pertaining to GSs and their associated ICMEs and IP shocks are succinctly presented in
Table 1 in Miteva et al.| (2023)). The initial column designates the event number (#). Columns (2)
and (3) detail the GS date, hour (mm-dd/hr), and the corresponding Dst index (in nT). Subsequently,
columns (4)—(6) expound upon the ICME parameters (Nieves-Chinchilla et al|[2018), drawing from
the Wind database accessible at this Websitﬂ The sheath duration (D, in hours), representing the
temporal span between the initiation times of the ICME and the magnetic structure, is computed from
the available timings within the plots offered by the aforementioned Wind database, and is presented in
column (7). The ICME in situ measured speed is extracted from both the Wind and ACE databases,
with the exception of E11 where no ICME is reported.

Column (8) integrates the minimum Bz component throughout the ICME duration, as ascertained
from the data available at this Websitﬂ thereby enhancing the comprehensiveness of the dataset. In
Column (9), we conduct a qualitative assessment of the ICME arrival orientation. Specifically, we visually
inspect the intersection point between the ICME structure and Earth using ecliptic plane animations
accessible at this Websitﬂ The orientations are denoted as either hit (nose) or f (flank) arrivals.
Instances of discrepancies among diverse data sources, such as the presence of solar wind streams or
CIRs visible in animations contradicting ICME arrivals identified through in situ data, are marked as u
(uncertain) in the same column. This classification signifies situations where a distinct ICME structure
propagating through the IP space could not be conclusively observed. Noteworthy is the occurrence of
swift solar wind flows and/or CIRs recorded near Earth during ICME and/or shock wave events. For
instance, in the cases of E11 and E18, a CIR was identified as their IP origin by |Qiu et al. (2022]);
however, in contrast to these findings, our methodology does not differentiate between ICME and sheath
origins.

The final columns, (10)—(13), enumerate the properties of the IP shock, incorporating timing, speed,
magnetic field, density, temperature jump at the shock interface, and the Mach number (Mms). These
details are sourced from Wind satellite data, available at this websit@ with the exception of E24, where
the median shock speed is derived from this Websit@ Notably, for E17, E18, and E25, no IP shocks
are reported in either database.

2.7.3 GSs and Solar Phenomena

In the context of five cases denoted as E05, E11, E17, E18, and E22, our attempts to identify SFs or CMEs
were unsuccessful. Furthermore, in an additional six cases, the specification of SFs proved unattainable.
The ensuing presentation provides details on the parameters of the remaining cases, specifically focusing
on the solar origins associated with GSs, as outlined in Table

Columns (2)—(5) of Table [2.6| elucidate the properties of the GS-associated SFs, while columns (6) to
(9) furnish the parameters of the GS-associated CMEs. The identified SFs exhibit a range of magnitudes
from C1.2 to X5.4 and are predominantly positioned proximate to the solar disk center, with the exception
of E02 and E03. The CMEs associated with these events possess on-sky projected speeds, denoted as
2D, spanning from 126 to 2684 kms~!, extracted from the SOHO-LASCO CDAW catalog. Notably,
the majority of the GS-associated CMEs (15 out of 20) exhibit a halo configuration, while three others
are in close proximity to halo.

It is imperative to note that events with uncertain CME origins have been excluded from the subse-
quent 3D analyses. Specifically, in the case of EQ7, the unique orientation of the double CME rendered
the de-projection procedure unfeasible for the same CME structure, leading to its exclusion from the 3D
analyses. Additionally, for seven other cases (E12, E14-E16, E19, E23, E25), the online tool utilized for
analyses failed to retrieve data simultaneously from both spacecraft. Consequently, these cases have also
been omitted from the 3D analyses.

Bhttp://www.ipshocks.fi/database
6https://lweb.cfa.harvard.edu/shocks/wi_data/
"https://wind.nasa.gov/ICME_catalog/ICME_catalog_viewer.php
8https://cdaweb.gsfc.nasa.gov/
http://helioweather.net/archive/
20http://www.ipshocks.fi/database
2Ihttps://lweb.cfa.harvard.edu/shocks/wi_data/
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For the remaining 12 cases, successful 3D CME speed reconstructions were achieved from each model.
The mean values, based on 2 or 4 available fits (as detailed in the subsequent subsection), are presented
in the concluding columns (10)—(12) of Table[2.6] This comprehensive overview provides a foundation for
the subsequent analytical discussions, offering a detailed characterization of the solar events associated
with the studied GSs.

2.7.4 PyThea 3D De-Projection Tool

The de-projection methodology employed in this investigation relies on the innovative PyThea online
tool designed for the 3D reconstruction of CMEs and shock waves (Kouloumvakos et al.|2022). All three
available models within PyThea, namely spheroid, ellipsoid, and the GCS model, are applied in this
study. The fitting procedure is conducted independently by two observers within our team. Figure 2.1§|
presents an illustrative example of the fits for event EO03.
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Figure 2.18: 3D reconstructions of a CME (E03) using the spheroid, ellipsoid, and GCS model from the
PyThea tool performed by observers 1 and 2 (top and bottom row, respectively). Credit goes to

et al] @029).

Upon scrutinizing the fitting outcomes for this particular example, it becomes evident that the re-
constructions exhibit a discernible bias. The observer’s subjective choice of structures to align with
the model introduces a level of variability. In the top row of Figure distinct shock-related struc-
tures (manifested as the bending of streamers) are observed, upon which the idealized GCS flux rope
geometry is fitted. Consequently, there is a likelihood of overestimating the CME width. Despite this
bias, it is noteworthy that the overall results, including directivity and speed for event E03, are mini-
mally impacted. However, it is acknowledged that the complexity of structure choices can lead to larger
discrepancies among different observers.

This study places emphasis on deriving de-projected CME speeds based on fits conducted at two
distinct time steps. For each of the three models, the initial CME longitude and latitude are manually
specified, utilizing the provided locations of the CME-accompanied SFs. It is important to note that these
values exhibit minimal to no substantial changes post-finalization of the fitting procedure. Consequently,
the final CME directivity provided by PyThea is considered to be a relatively crude estimate. The
ultimate orientations of the CME in IP space and at Earth are derived solely from qualitative information
extracted from animations available at this Websitelﬂ This approach ensures a rigorous and consistent
basis for evaluating the de-projected CME speeds in our analyses.

22|h1:1:p ://helioweather. net/archive/|
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2.7.5 Results
Projection Effects

In our investigation, a fitting analysis of approximately 10 CMEs was undertaken by two designated
observers within our research team, I was one of the observers. This analysis involved the utilization of
all three models available in the PyThea framework, each selected based on the evaluators’ individual
considerations. To elucidate, the fitting process was executed at two distinct time steps to derive a
velocity parameter based on the height—time estimation. For each specific event, both observers itera-
tively conducted the 3D de-projection procedure twice, resulting in averaged values for the CME speeds.
These values are meticulously presented in Table rounded to the nearest tenth. The disparity be-
tween these two fitting instances is denoted as an error (or uncertainty), spanning from 10 km s~ to
twice the estimated speed. Additionally, Figure illustrates the correlation between 3D speeds and
the corresponding estimated errors for each observer. Notably, considerable variability is observed in
both plots, particularly concerning the GCS model; nonetheless, a discernible positive trend emerges
between the estimated error magnitude and the CME speed.

The inherent subjectivity and diverse levels of experience among observers play a crucial role in the
visual fitting procedure. Noteworthy distinctions in evaluated speeds are evident not only between in-
dividual observers using the same model (e.g., spheroid fit for E06) but also between a single observer
applying different models (e.g., spheroid and GCS for E13). Furthermore, variations in operating system
software further contributed to differences in results. Notably, events E04, FE08, and E21 were not com-
pleted by both observers due to either PyThea computing resource failures or the substantial uncertainty
associated with the visual assessment of CME structures.

Our findings underscore the well-established subjectivity inherent in procedures relying on personal
judgment for fit quality, where the alignment of structures with the model is subjective. A more com-
prehensive explanation of this human-in-the-loop bias is detailed in (Verbeke et al[2022)). The specific
values of CME speeds are meticulously outlined in Table while their averaged values, categorized by
model, as determined by both observers, are presented in Table These averaged values will serve as
the basis for subsequent correlation studies.
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Table 2.5: Characteristics of GSs, ICMEs, and IP Shock Waves. Magnetic Obstacle (MO) categorized as Flux-rope (Fr), Small rotation flux-rope (F-), Large
rotation flux-rope (F+), Complex (Cx), or Ejecta (E). The timestamp includes month (mm), day (dd), and time (UT). Dst is measured in nT, speed in kms—!,
A (duration from ICME start to MO start) in hours, B, in nT, hit locations denoted as n (nose), f (flank), */** (fast/slow speed), u (streamer/no clear ICME).
Additional abbreviations: X: magnetic field/plasma density/temperature; d/u: downstream/upstream side of the shock interface; My,s: Mach number.

Credit goes to Miteva et al.|(2023).

GS ICME parameters IP shock parameters
mm-dd/hr Dst mm-dd/time type speed Wind/ACE A B, hit mm-dd/time speed Xa/Xu Mms

(1) (2) (3) (4) (5) (6) (7) (8) 9) (10) (11) (12) (13)
2011

EO01 08-06/04 —115 08-06/22:00 - -/540 - —22.8 * 08-05/18:41 789 2.52/1.37/2.21 3.7
E02 09-26/24 —118 09-26/22:00 - -/580 - —33.6 f 09-26/11:44 544 2.35/2.56/2.64 24
EO03 10—25/02 —147 10—24/17:41 Cx 483/460 6.7 —24.6 f 10-24/17:40 542 2.16/2.94/4.88 2.5
2012

E04 03-09/09 —145 03-08/10:32 Cx 576/550 9.4 —19.2 n 03-08/10:31 1245 1.42/1.31/1.25 8.4
EO05 04-24/05 —120 04-23/02:15 F- 373/370 14.6 —15.9 f 04-23/02:15 416 2.45/2.44/1.87 1.7
E06 07-15/17 —139 07-14/17:39 Fr 491/490 12.6  —20.0 n 07-14/17:39 617 2.08/2.53/4.29 3.3
EO07 10-01/05 —122 09-30/10:14 Cx 354/370 2.0 —21.2 f 09-30/22:19 452 2.55/2.00/2.05 2.5
E08 10-09/09 —109 10-08/04:12 Fr 398/390 11.6 —16.0 u 10-08/04:12 445 1.96/2.01/1.63 1.7
E09 11—14/08 —108 11—12/22:12 F+ 381/380 10.2 —20.6 f 11-12/22:12 386 2.18/2.20/1.08 1.6
2013

E10 03-17/21 —132 03-17/05:21 Fr 529/520 8.8 —19.3 n 03-17/05:22 719 2.45/2.68/10.5 4.1
El1l  06-01/09 —124 - - -/ - —88 u  05-31/15:12 410  2.90/2.16/2.83 2.1
E12 06-29/07 —102 06-27/13:51 Fr 391/- 12.5 —12.4 u 06-30/10:42 349 1.55/1.61/1.27 1.4
2014

E13 02-19/09 —119 02-18/05:59 Fr 421/520 9.1 —15.4 u 02-19/03:10 597 1.82/1.69/1.51 1.9
2015

E14 01-07/12 —107 01-07/05:38 F+ 451/450 0.8 —20.4 u 01-07/05:39 494 1.70/1.73/1.89 1.2
E15 03-17/23 —234 08-17/13:00 - -/560 - —26.0 * 03-17/04:00 562 2.52/2.43/3.50 2.6
E16 06-23/05 —198 06-22/18:07 Cx 598/610 8.3 —39.0 n 06-22/18:08 767 3.34/3.63/6.70 4.1
E17 09-09/13 —105 09-07/13:05 F+ 468/460 10.4 —12.6 u - - - -
E18 10-07/23 —130 10-06/21:35 Fr 425/- 0 —9.2 u - - - -
E19 12-20/23 —166 12-19/15:35 Fr 398/400 221 —19.0 n 12-19/15:38 563 2.49/2.25/4.87 3.0
2016

E20 01-01/01 —116 12-81/17:00 - -/440 - —16.3 n** 12-31/00:18 404 2.20/2.27/3.99 2.6
E21 01—20/17 —101 01—19/03:31 Fr 362/370 7.9 —11.6 f 01-18/21:21 350 1.73/1.91/1.60 1.7
E22 10-13/18 —110 10-12/21:37 F+ 384/390 8.8 —6.9 u 10-12/21:16 431 1.82/2.47/4.43 1.9
2017

E23 05-28/08 —125 05-27/13:45 F+ 318/360 9.1 —20.2 f 05-27/14:42 378 2.68/2.94/2.95 1.9
E24 09-08/02 —122 09-07/16:17 E 683/460 8.0 —32.2 * 09-07/22:28 718 - -
2018

E25 08-26/07 —175  08-25/01:02 F+ 406/410 11.0 —6.8 n - - - -




Table 2.6: Parameters of the solar origin, SFs, and CMEs for GSs from Table All times are in UT,
speeds in kms~!, AW and MPA in degrees. Credit goes to [Miteva et al.| (2023).

# SF parameters 2D CME parameters 3D CME speed
mm-dd class onset location time speed AW MPA spheroid elliptical GCS
(1) (2) (3) (4) (5) (6) (7 (8) (9) (10) (11) (12)
2011
EO1 08-04 M9.3 03:41 N19W36 04:12 1315 360 298 1990 1920 1780
E02 09-24 M7.1 12:33 N10S56 12:48 1915 360 78 1570 1590 1720
E03 10-22 M1.3 10:00 N25W77 10:24 1005 360 311 760 690 840
2012
E04 03-07 X5.4 00:02 N17527 00:24 2684 360 57 2150 2460 2530
EO05 uncertain origin - - -
E06 07-12 X1.4 15:37 S15W01 16:48 885 360 158 1060 1780 1520
EO07 09-28 C3.7 23:36 NO6W 34 24:12 947 360 251 multiple CMEs
EO08 10-05 uncertain 02:48 612 284 202 350 360 350
E09 11-09 uncertain 15:12 559 276 157 660 570 720
2013
E10 03-15 X1.1 05:46 N11S11 07:12 1063 360 112 720 1040 1110
E1l1 uncertain origin - - -
E12 06-28 uncertain 02:00 1037 360 214 no SOHO images
2014
E13 02-16 M1.1 09:20 S11E01 10:00 634 360 227 340 690 890
2015
E1l4 01-03 C1l.2 03:06 SO05E21 03:12 163 153 144 no STEREO images
E15 03-15 C9.1 01:15 S22W25 01:48 719 360 240 no STEREO images
E1l6 06-21 M2.6 02:06 N12E13 02:36 1366 360 72 no STEREO images
E17 uncertain origin - - -
E18 uncertain origin - - -
E19 12-16 C6.6 08:34 S13Wo04 09:36 579 360 334 no STEREO images
2016
E20 12-28 M1.8 11:20 S23W11 12:12 1212 360 163 820 680 1080
E21 01-14 uncertain 23:24 191 360 234 620 440 280
E22 uncertain origin - - -
2017
E23 05-23 uncertain 05:00 259 243 281 no SOHO images
E24 09-04 M5.5 20:28 S11W16 20:36 1418 360 184 1020 1290 990
2018
E25 08-20 uncertain 21:24 126 120 266 no STEREO images

Table 2.7: CME Speeds (km s~1) for Observers 1 and 2. Credit goes to Miteva et al.| (2023).

# Spheroid Ellipsoid GCS
obsl obs2 obsl obs2 obs1 obs2

EO01 2170+870 1800+£270 2130+£200 17104450 1590+100 1760 =+ 10
E02 17804140 1350£50 1880=£580 131090 17804260 1630+ 130
E03  770+40 740 £ 10 640+ 180  740+180 1020£170 700 +£ 270

E04 - 2150 £ 140 - 2460 £ 70 - 2530 £ 630
EO6 1410+£420 71070 1870 £50 1700+ 300 1680 £ 870 1560 £ 470
E08 350+ 90 360 = 150 - 350 £ 70

E09 690£280 630150 550+ 170 590 £ 60 670 £ 610 710 £ 220
E10 840+£380 610£1040 1120£360 960£90  1160=+650 1310+ 80
E13  320+90 350 £ 50 620+ 140 750 £ 160 780+£80 1310+ 700
E20 830£190 800+ 600 790 = 90 570 £20  1240£280 1130=£230
E21 620 £ 230 - 440 £ 40 - 280 %+ 180 -

E24  750+£270 1310£220 880+350 2020£960 950+120 1560 + 540

Correlation between GSs, Coronal and Near-Sun Parameters

In Figure we present a scatter plot depicting the relationship between the modulus of the GS Dst
index and the CME speed, as derived from the data in Table 2.6] To enhance clarity, the averaged
results of the three model fits are collectively illustrated and labeled as 3D-mean in Table 2.8 These
values are juxtaposed with the 2D SOHO-LASCO CME speed. Horizontal lines, representing the error
estimates from the 3D de-projections, are also included for completeness, despite the substantial overlap.
For demonstrative purposes, we highlight the largest error value among the two observers, as outlined
in Table

The analysis conducted reveals no discernible trend between the Dst index and the CME speed,
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Figure 2.19: Scatter plot illustrates the comparison of 3D de-projected CME speeds derived from the
spheroid model (depicted as diamonds), the ellipsoid model (represented by stars), and the GCS model
(indicated as dots) versus the measurement errors for observers 1 (left) and 2 (right). Credit goes to
Miteva et al.| (2023)).

irrespective of whether the 3D de-projection or the 2D CME speeds are considered. It is important to
note that, due to data constraints, 3D speed de-projections were not feasible for the most robust GSs.
This limitation results in a skewed distribution of the 3D speeds, impacting the overall findings. Despite
the modest sample size (comprising between 10 and 20 event pairs), the quality of the fit is assessed
through Pearson correlations. The correlation coefficients, reflecting the relationship between all CME
speed estimations and the GS Dst index, are systematically documented in Table These coeflicients
range from negligible (e.g., 0.04 for the 2D LASCO speeds) to moderate (with the highest value reaching
0.55, observed with the GCS model). Importantly, no significant correlations are identified between
the Dst index and other coronal parameters, such as SF class, location, and CME AW, as inclusively
presented in the same table for comprehensive evaluation.

Table 2.8: Table displaying Pearson correlation coefficients among the GS Dst index, CME speed, and
various solar parameters, with the respective sample sizes indicated in parentheses. Credit goes to|Miteva,
et al.| (2023]).

CME source Dst—speed solar parameter Dst—solar parameter
LASCO 0.04 (20) SF class —0.04 (14)
3D - mean 0.49 (12) SF latitude —0.16 (14)
3D spheroid - mean  0.34 (12) SF longitude 0.13 (14)
3D spheroid - obs1 ~ 0.14 (11) CME AW 0.03 (20)
3D spheroid - obs2  0.15 (10)

3D ellipsoid - mean  0.53 (12)

3D ellipsoid - obsl ~ 0.28 (11)

3D ellipsoid - obs2  0.40 (10)

3D GCS - mean 0.55 (12)

3D GCS - obsl 0.49 (11)

3D GCS - obs2 0.27 (10)

Correlation between GSs and IP Parameters

Here, we explore the correlations between GSs and various parameters associated with pre-selected IP
phenomena. To visually represent these relationships, scatter plots are employed for specific parameter
pairs. These parameters include Dst index versus ICME speed and IP shock speed, Dst versus Mach
number and sheath duration, Dst versus |Bz| and By/B,, Dst versus Ty/T, and Ny/N,. Figure m
shows these relationships, and the corresponding Pearson correlation values elucidating these trends are
documented in Table

For the limited sample of GS storms utilized in our analyses, we observe a moderately positive trend
between the Dst index and the plasma compression parameters at the shock interface (downstream
to upstream ratio). Interestingly, these correlations are comparable to, or slightly larger than, those
obtained when considering ICME speeds from the Wind and ACE spacecraft. Notably, the trend with
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Figure 2.20: Scatter plot illustrating the relationship between the Dst index and CME speed, incorpo-
rating data from the SOHO/LASCO instrument (represented by filled circles) and 3D de-projections
(depicted by empty circles). Credit goes to Miteva et al.| (2023).

Table 2.9: Tabular representation of Pearson correlation coefficients between the GS Dst index and
various parameters of IP phenomena. The data is derived from Wind satellite measurements, unless
otherwise stated, with the corresponding sample sizes indicated in parentheses. Credit goes to [Miteva
et al.| (2023)).

IP parameter Dst—IP parameter
ICME speed 0.37 (24)
ICME speed (ACE) 0.44 (22)
IP shock speed 0.35 (22)
Mach number 0.36 (21)
sheath duration 0.22 (20)

| B:| 0.37 (25)
Ba/B. 0.48 (21)
Ta/Tu 0.40 (21)
Ny/N, 0.46 (21)
B —0.14 (20)
1% 0.19 (20)
Bu —0.14 (21)
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Figure 2.21: Comprehensive scatter plots illustrating the relationships between Dst index and various
solar wind parameters, including Wind/ACE ICME speed, IP shock speed, Mach number, duration of
sheath region, Bz, magnetic field jump, temperature jump, and density jump. Credit goes to [Miteva
et al.| (2023)).
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|Bz| is weaker (0.37 for our dataset), in contrast to the robust trend reported in previous studies.
Furthermore, the correlations involving Dst and IP shock speed, Mach number, or sheath duration are
relatively smaller.

Recent reports have highlighted strong correlations with different components of the electric and
magnetic fields (Echer & Gonzalez|[2022), although this aspect exceeds the scope of our current analyses.
It is essential to exercise caution in interpreting these results, given the absence of uncertainty estimates
for the correlation coefficients. The ICME and IP shock catalogs employed in our study offer additional
parameters, including averaged magnetic field B, plasma speed V inside the magnetic structure, and
upstream plasma beta bu (not presented in Table . However, no robust correlations emerge between
these parameters and the Dst index, with all correlation coefficients found being smaller than 0.2.

On the GS Strength Forecasting Based on Solar and IP Parameters

We examine the collective impact of magnetic obstacle type and orientation upon Earth arrival (columns
5 and 9 from Table , along with the 3D reconstructed CME speeds (columns 10-12 from Table ,
on the intensity of GSs, approximated in this study using the Dst index.

The most potent GSs in our compilation, arranged in descending order based on their Dst values
(nT), exhibit distinctive magnetic structure parameters, including complexity, orientation of arrival, and
speed at Earth (refer to Tables and :

e E15 (-234): Magnetic obstacle type undefined, fast speed (f), no 3D speed estimation;

198): Complex (Cx) structure, nose-like (n) orientation, no 3D speed estimation;

e E25 (-175): Flux-rope (Fr) structure, nose-like (n) orientation, no 3D speed estimation;

—_

e E19 (-166):

)
)
)
): Flux-rope (Fr) structure, nose-like (n) orientation, no 3D speed estimation;
)
)
)
)

e E03 (-147): Complex (Cx) structure, fast speed (f), reduced 3D speed compared to 2D;
Complex (Cx) structure, nose-like (n) orientation, similar 3D speed compared to 2D;

o 04 (-145):

e E06 (-139): Flux-rope (Fr) structure, nose-like (n) orientation, larger 3D speed compared to 2D;
Flux-rope (Fr) structure, nose-like (n) orientation, similar 3D speed compared to 2D.

(-
6 (-
(-
(-
(-
(-
(-
(-

e E10 (-132):

Upon scrutiny of these cases, it becomes apparent that the most intense GSs are linked to magnetic
obstacles characterized by a nose-like (n) orientation upon arrival, coupled with either a complex (Cx) or
flux-rope (Fr) structure. Exceptions include instances of fast speed flank hits or flank hits in combination
with a complex (Cx) structure. It has been established that sheath duration does not serve as a decisive
ordering parameter. Other GSs of lesser intensity (refer to Table predominantly result from flank
hits or exhibit uncertain configurations, possibly influenced by fast solar wind streams or CIRs. Notably,
E20 is an exception, resulting from a nose hit; however, the IP structure associated with it has a notably
low speed, as observed in the examined animations.

It is crucial to acknowledge that the IP shock speed provided by the Wind and ACE satellites
represents a single point sample within the entire structure. In contrast, animations offer a global
speed distribution. Therefore, our interpretation considers information from both sources — speed
reconstructions and in situ measurements — to enhance the robustness of our analysis.

2.8 Discussion

The eruption on May 11, 2011, presented a complex set of solar phenomena, including a fast partial-halo
CME, a weak solar flare, an eruptive filament, and a type II radio burst. The interplay of these events
and their effects on the solar and interplanetary environment provides valuable insights into the dynamic
nature of solar processes.
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2.8.1 CME Kinematics and Coronal Shock Wave Characteristics

The CME associated with the eruption exhibited notable characteristics, such as a linear speed of 745
kms~!, an acceleration of 3.3 m s72, and an angular width of 225°. The shock wave generated by the
CME displayed intricate kinematics, as analyzed in both the low and middle/outer corona.

In the low corona, the shock wave was asymmetric, with differences observed in the time-dependent
evolution between the left and right flanks. The aspect ratio evolution from elongation to symmetry and
subsequent flattening revealed the dynamic nature of the shock wave geometry. The lateral directions
exhibited differences in thickness, speed, and acceleration, indicating a complex interaction with the
coronal environment. The right flank demonstrated over six times the sheath thickness observed on the
left, emphasizing lateral expansion over radial propagation.

Further analysis segmented the shock surface into the Cap zone, Zone 1, and Zone 2. The shock
speed at the flanks exceeded that at the Cap zone, suggesting variations in shock characteristics along
its surface. The shock density jump remained consistent across the segments, indicating a relatively
homogeneous magnetic structure.

In the middle/outer corona, the height-time profile of the CME leading edge provided by SOHO/LASCO
measurements showcased the dynamic evolution of the EUV wave. The Gallagher model fitting captured
the early stages of the event near the Sun, emphasizing the importance of a comprehensive approach in
combining ATA and LASCO measurements.

The wave’s rapid acceleration and subsequent speed decrease within a distance of 5 R from the Sun
highlighted the intricate interplay between the CME and the surrounding medium. The fluctuations in
acceleration and speed over time further underscored the complexity of the coronal shock wave dynamics.

The statistical analysis of coronal wave events in the AIA and LASCO FOVs revealed intriguing
patterns. Waves in the radial direction exhibited higher speeds, acceleration, lower mean intensities, and
lower thickness compared to the lateral direction, indicating early elongation near the Sun.

Cumulative dynamic spectra illustrated the decline in shock speed and intensity with increasing dis-
tance, aligning with expectations of decreasing momentum and plasma densities in the solar environment.

The investigation into plasma parameters and shock characteristics over 26 events demonstrated
correlations between various pairs of parameters. Noteworthy correlations included those between the
shock-field 8y angle and magnetic field amplitude, as well as between shock density jump and magnetic
field magnitude. Power fits were identified as suitable models, laying the groundwork for developing
parameterizations in the subsequent phases of the project.

2.8.2 Unveiling Dynamic Coronal Features with Wavetrack

In this study, Stepanyuk et al.| (2022) applied the Wavetrack methodology to investigate eruptive solar
events, focusing particularly on the May 11, 2011 event associated with a prominent CBF. The analysis
encompassed two additional events, occurring on June 7, 2011, and December 12, 2013, showcasing
Wavetrack’s versatility in tracking various solar features both on the solar disk and off the limb.

The Wavetrack algorithm efficiently delineated the evolving CBFs across consecutive time steps for
the May 11, 2011 event, as depicted in Figure Notably, the algorithm’s adaptability was evident
despite variations in pixel distributions and intensities on the solar disk and near the limb. This capability
allowed for a detailed exploration of the time-dependent shapes and changing intensity distributions of
CBFs, distinct from the broader corona. The segmentation of the CBF during the December 12, 2013
event underscored Wavetrack’s efficacy in tracking multiple separate parts of the same feature, even
under heightened coronal activity. This highlights the potential of Wavetrack as a valuable tool for
studying complex solar phenomena with varying activity states.

To further probe the kinematics of CBFs and filaments, we employed the FLCT method. The results,
presented in Figure revealed the instantaneous plane-of-sky direction and speed of different regions
within the CBF during the May 11, 2011 event. Intriguingly, the uneven expansion of the CBF from
the central source was evident, with the thinnest part driven by the erupting filament exhibiting the
fastest motion. This nuanced information, not discernible from intensity observations alone, underscores
the complementary nature of the Wavetrack and FLCT approach in elucidating the dynamic behavior
of coronal features.

The highest speeds observed during the event were consistently in the direction away from the Sun,
above the erupting filament driver. The continued compression by the driving filament caused a thinner
wavefront region and higher speeds there. The study calculated the plane-of-sky speeds of the erupting
filament driver, showing that the region of highest speeds in the rising filament was directly below the
region of highest speeds in the CBF.
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The Wavetrack method provided the geometric centers and centers of mass for the May 11, 2011
event. The GC is defined as the geometric center of all Wavetrack mask pixels at a given time, while
the CM includes a weighting based on the ATA 193 A channel’s base difference intensity. The study
presented the kinematics of the center of mass and geometric centers for this event, showing the X-axis
and Y-axis positions, radial distances, radial speeds, and the angle between the two position vectors over
time. These results provide insights into the dynamics and characteristics of the May 11, 2011 solar
eruption event, highlighting the movement and speeds of key features such as the CBF and the erupting
filament driver.

2.8.3 Projection Effects: The Challenge of Subjectivity in CME Speed De-
termination

Our investigation into CMEs reveals a nuanced landscape marked by the inherent subjectivity in the
fitting and de-projection procedures. The analysis of approximately 10 CMEs, employing three models
from the PyThea framework, underscores the considerable variability in results. Two designated ob-
servers within our research team, accounting for individual considerations, conducted fitting analyses.
The iterative 3D de-projection procedure led to averaged CME speeds, documented in Table The
associated errors, ranging from 10km s~ !to twice the estimated speed, highlight the challenges and
uncertainties in this process.

The observed disparities among observers, even using the same model, and the impact of different
models and operating systems on results emphasize the subjective nature of visual fitting procedures.
Technical limitations, such as PyThea computing resource failures and uncertainty in visual assessments,
further contributed to incomplete data for specific events. Our findings echo the well-established sub-
jectivity inherent in procedures relying on personal judgment for fit quality, aligning with the broader
discussion presented by [Verbeke et al.| (2022)). The averaged CME speed values, categorized by model
and determined by both observers, serve as the foundation for subsequent correlation studies. Despite
the challenges posed by subjectivity, these averaged values provide a basis for further analysis.

Our exploration of the correlation between GSs and various parameters, such as the GS Dst index,
CME speed, and 2D LASCO CME speed, unfolds in Figure 2:20] and Table 2:8] Despite the modest
sample size, the analysis reveals no discernible trend between the Dst index and CME speed, irrespective
of the 3D de-projection or the 2D CME speeds. The absence of 3D speed de-projections for the most
robust GSs introduces a limitation in the distribution of 3D speeds, impacting overall findings.

Pearson correlation coefficients, systematically documented in Table range from negligible to
moderate, indicating diverse relationships between CME speed estimations and the GS Dst index. No-
tably, no significant correlations are identified between the Dst index and other coronal parameters,
such as SF class, location, and CME AW. The complexities in these relationships highlight the need
for cautious interpretation, given the data constraints and uncertainties associated with the correlation
coefficients.

The examination of correlations between GSs and IP parameters unfolds in scatter plots in Fig-
ure accompanied by Pearson correlation values in Table 5. Noteworthy trends include a moderately
positive correlation between the Dst index and plasma compression parameters at the shock interface,
comparable to correlations with ICME speeds. However, caution is advised in interpreting results due
to the absence of uncertainty estimates for correlation coefficients. Additional parameters from ICME
and IP shock catalogs, including averaged magnetic field B, plasma speed V', and upstream plasma f3,,
exhibit no robust correlations with the Dst index. The complexities in these relationships underline the
multifaceted nature of GS-IP parameter associations.

Our analysis of the collective impact of magnetic obstacle type, orientation, and 3D reconstructed
CME speeds on GSs sheds light on intriguing patterns. The most potent GSs, based on descending
Dst values, exhibit distinctive magnetic structure parameters, such as complexity, orientation of arrival,
and speed at Earth. Notably, nose-like (n) orientation, coupled with a complex (Cx) or flux-rope (Fr)
structure, characterizes the most intense GSs. Exceptions include instances of fast-speed flank hits or
flank hits in combination with a complex (Cx) structure.

The interplay of magnetic obstacle characteristics, orientation, and 3D CME speeds provides valuable
insights into the factors influencing GS intensity. However, it is crucial to acknowledge the limitations of
single-point IP shock speed measurements and the need for a comprehensive interpretation that considers
both speed reconstructions and in situ measurements.
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2.9 Conclusions

I have conducted a comprehensive study focusing on the characterization of 26 historical CME-driven
CBFs in the low solar corona. These events were accompanied by type III radio bursts, and SEP events
near Earth and were observed by the AIA instrument onboard the SDO spacecraft in the EUV 193 A
band. To achieve this, we utilized the SPREAdFAST framework, which encompasses physics-based and
data-driven models to estimate the coronal magnetic field, dynamics of coronal shock waves, energetic
particle acceleration, and SEP propagation in the heliosphere. My analysis relied on sequences of base-
difference images obtained from the AIA instrument. These images served as the primary input data
for our investigation. We employed these data to generate annulus plots and J-maps to estimate the
kinematic measurements in both the radial and lateral directions for the EUV waves.

In order to obtain a thorough understanding of the CBFs, I computed various time-dependent and
distance-dependent kinematic parameters. These included shock speed, acceleration, intensity, and thick-
ness of the front, peak, and back edges of the waves, as well as the major and minor axes and the rate of
change of the waves’ aspect ratios. To augment our analysis based on AIA observations, we incorporated
LASCO measurements up to 17 R, . This additional data is important in improving the characterization
of the SEP spectra near the Sun.

The analysis of kinematic measurements played a pivotal role in our study as they enabled us to
generate time-dependent 3D geometric models of wave fronts. In addition, these measurements provided
valuable insights for deriving time-dependent plasma diagnostics by incorporating the outcomes of the
MHD and DEM models.

To accurately represent the shocks, we employed shock kinematic measurements to fit a geometric
spheroid surface model for each measured time step. This approach allowed us to capture the intricate
characteristics of the shocks with precision. In order to gain a deeper understanding of the phenomenon,
we explored the parametrized relationships between the modeled plasma parameters. Through this anal-
ysis, we aimed to identify potential connections and inter-dependencies, shedding light on the complex
dynamics at play. Overall, our findings in this study and in [Kozarev et al.| (2022)) as well as [Stepanyuk
et al.| (2022)) contribute to a nuanced understanding of shock kinematics and shock plasma parameters.

Moving forward, our future investigations will focus on examining SEP acceleration near the Sun, as
well as investigating the transport of coronal and interplanetary particles using the insights gained from
our models. Additionally, we aim to refine the methods of shock and coronal parameters characterization,
which will contribute to enhancing the accuracy and reliability of the results.

In the study led by |Stepanyuk et al. (2022), we introduce Wavetrack, an innovative approach designed
for the automated identification and monitoring of dynamic coronal phenomena. Employing wavelet de-
composition, feature enhancement, filtering, and ultimate object recomposition, Wavetrack generates
time-dependent masks for feature pixels. These masks can be applied to integral or base-difference
images, yielding comprehensive feature maps. Notably, Wavetrack excels in tracing pixels associated
with faint, large-scale features, such as coronal bright fronts/EUV waves in ATA observations, and has
demonstrated efficacy in tracking eruptive filaments. Operable for both on-disk and off-limb features,
Wavetrack adeptly follows features that evolve into distinct components over time. Implemented as a
versatile, object-oriented framework in Python, Wavetrack is freely accessible for download and utiliza-
tion.

The application of Wavetrack to four distinct events, with emphasis on three — the CBF's occurring
on May 11 and June 07, 2011, and December 12, 2013 — reveals its proficiency in tracking complete CBF
pixel maps. These model results, when integrated with the FLCT method for calculating plane-of-sky
speeds, unveil the dynamic evolution of driven and non-driven regions within CBFs, as well as their
correlation with eruptive filament drivers. Our findings indicate that drivers induce a compression effect,
causing CBF thinning and increased speed, aligning with theoretical models. However, the brightness of
CBF's in the driven regions, as observed in ATA data, does not necessarily exhibit a significant increase.

Furthermore, Wavetrack facilitates the tracking of temporal changes in feature regions by computing
the time-dependent vector between the pixel geometric center and the center of mass, determined by
weighing the observed pixel intensities. This proves particularly valuable for large-scale features like
CBFs, providing a straightforward metric in the form of a one-dimensional time series for characterizing
feature evolution.

While the method demonstrates widespread applicability to various solar dynamic features and obser-
vational data, it currently relies on human input for the segmentation of specific feature types, particu-
larly dim ones. Manual setting of object criteria, including threshold intervals and recomposition weight
coefficients, is necessary. In instances of base difference imaging, precise selection of the base image
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is crucial to prevent contamination of input data with spurious features. Additionally, parameter fine-
tuning through trial and error may be required for specific events. These limitations are acknowledged,
and future work will address them to enhance the model’s versatility.

The methodology holds promise for extensive application across diverse solar dynamic features and
observational datasets. Subsequent research endeavors will extend its use to in-depth studies of filament
evolution and coronagraph data. The objective is to refine our comprehension of how large-scale eruptive
fronts manifest variations across distinct observational contexts, spanning the low and middle corona.

In the study led by Miteva et al| (2023)), we conduct post-event analyses of all geo-effective storms
observed during solar cycle 24 with the aim of identifying distinct and reliable predictors for GS intensity.
The overarching objective is to derive dependable solar or near-Sun parameters from remote sensing
image data that can be effectively utilized for early warnings regarding potential GS onsets and their
strength. Our approach involves the integration of solar, near-Sun, and interplanetary parameters,
primarily sourced from catalogs but also subject to our analysis using space-related databases. Notably,
we incorporate the results obtained from a novel tool for CME speed de-projection, termed PyThea,
which is employed for the first time alongside well-established parameters in space weather and geophysics
research.

Among the solar and near-Sun phenomena considered, certain selected parameters exhibit a posi-
tive correlation with the Dst index. Notably, the correlation coefficient, when comparing the observed
projected CME speed, experiences an improvement from 0.04 (as obtained from LASCO) to a range of
0.34-0.55, achieved through various geometrical models provided by the PyThea software package, com-
bining LASCO and STEREO data. However, our exploration of different CME geometry reconstruction
techniques reveals a susceptibility to large speed errors, particularly in the case of fast CMEs. This aligns
with findings from prior studies focusing on CME arrival time and speed forecasts for Earth, suggesting
a potential overestimation of CME launch speed for fast events, likely attributable to the increased com-
plexity in discerning coronal structures due to the rapid expansion of the magnetic structure associated
with the CME.

Moreover, our examination indicates that fast halo CMEs may exhibit significant deviations, stem-
ming from the overlap in shock and magnetic structure components, thereby strongly impacting the
reconstruction quality. Consequently, we assert that the derived near-Sun 3D parameters continue to
possess limited forecasting potential for predicting GS strength. In contrast, most selected IP parame-
ters derived from in situ measurements display moderate positive correlations with GS strength, in line
with expectations. However, the Bz parameter (southward component of the magnetic field) shows a
relatively low correlation coefficient of 0.37, possibly influenced by the limited event sample used in our
study.

Other IP parameters, such as ICME and IP shock speeds, along with their derivative parameters (e.g.,
Mach number), exhibit a positive trend with the Dst index, featuring correlation coefficients of 0.35-0.45.
Nevertheless, none of these parameters emerge as predominant, and their reliance on single-point in situ
observation raises considerations about their comprehensive predictive capability. Discrepancies in ICME
speed values between ACE and Wind measurements prompt further investigation, with slightly stronger
correlation coefficients (0.4-0.5) observed when utilizing different shock parameters. However, averaged
values of magnetic field and speed within the magnetic structure, plasma beta in the upstream region,
or duration of the sheath region show no correlation with GS strength.

Among the multitude of considered solar, near-Sun, and IP parameters, only the combination of speed
and orientation (nose-like) of the magnetic obstacle appears to exert a positive influence on GS strength,
as indicated by qualitative results obtained from animations accessible at helioweather. Consistent with
earlier studies, de-projected CME speeds emerge as imperative for enhancing modeling accuracy when
predicting CME propagation through the IP space. However, a notable observation is the apparent lack
of direct impact of 3D de-projected CME speed on GS intensity. Consequently, an accurate estimation
of the ICME speed distribution over the entire ICME structure upon arrival at Earth assumes significant
importance. We emphasize the imperative need for permanent stereoscopic observations, exemplified by
the upcoming ESA Vigil mission situated at Lagrange point L5. Future research endeavors should aim
for a more comprehensive disentanglement of distinct CME structures, thereby enabling more reliable
3D reconstructions of CME geometries for a nuanced estimation of 3D speed and directivity.

In conclusion, the identified correlations and statistical patterns provide a foundation for the ongoing
project. Further work will focus on refining parameterizations and establishing synoptic MHD parameters
corresponding to measured shock parameters. The ultimate goal is to enhance the representation of shock
parameters in the S38M synoptic model, contributing to a more comprehensive understanding of solar
dynamics and space weather forecasting.
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Furthermore, our findings emphasize the significance of integrating advanced tracking methodolo-
gies like Wavetrack with kinematic analyses such as FLCT. This synergistic approach enables a more
comprehensive understanding of the intricate dynamics involved in eruptive solar events, shedding light
on the complexities of CBF evolution and its correlation with eruptive features. As we continue to re-
fine and expand such methodologies, our ability to decipher the underlying mechanisms governing solar
phenomena will undoubtedly advance, contributing to the broader field of Heliophysics.

Moreover, our findings underscore the complexity and subjectivity inherent in studying CMEs and
their impact on geomagnetic storms. The integration of observational data, model outputs, and corre-
lation analyses offers a comprehensive perspective, laying the groundwork for further investigations into
the dynamic interplay between solar and interplanetary phenomena in shaping space weather events.
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Chapter 3

Solar Radio Observations
Integrating Data for Coronal Diagnostics

In this chapter, I focus on multi-wavelength observations of solar type III radio bursts, as well as modeling
studies of plasma parameters and coronal magnetic fields, to gain insights into the mechanism of solar
radio emission during quiet times and the coronal conditions influencing the propagation and detection
of these bursts. First, I briefly introduce the characteristics of solar type III radio bursts. I then present
the data I have worked with, detailing the multiple processing stages I undertook. Finally, I present my
outputs and interpret their meaning.

3.1 Introduction

Type III radio bursts are manifestations of transient energetic electron beams injected into the solar
corona, propagating along the interplanetary magnetic field (IMF) lines [Ergun et al.[ (1998)); [Pick| (2006);
Reid| (2020). As these beams traverse the corona, they trigger plasma waves (also known as Langmuir
waves) that are then transformed into radio emission at the local plasma frequency or its harmonic
components [Melrose| (2017). In the radio spectrograms, type III bursts are usually observed as intense
emissions that drift in frequency over timescales of several seconds to minutes and over a wide range of
frequencies, from metric to decametric wavelengths [Wild & McCready| (1950); Lecacheux et al.| (1989);
Bonnin et al.| (2008), making them detectable by ground-based instruments on Earth and various space-
craft within the heliosphere. The frequency of the radio emission is directly related to the plasma density,
making type III bursts a valuable diagnostic tool for examining the inner heliosphere and the processes
that drive solar active phenomena, such as solar flares and coronal mass ejections |Reid & Ratcliffe (2014));
Kontar et al.| (2017)).

The electron beams follow open magnetic field lines and can persist well beyond 1 AU (e.g., Dulk
et al.| (1985); Boudjada et al.| (2020)), offering in situ insights into the burst and ambient conditions of
the heliosphere, including electron density, radio frequency drift, speed of the electron beams and even
potential direct detection of Langmuir waves (see|Gurnett & Anderson| (1976, [1977) and Reid & Ratcliffe
(2014) and references within). In addition, tracing the path of type III bursts provides a map of the
density structure of the heliosphere, serving as a foundation for developing and testing density models.
Since radio observations below ~ 10 MHz cannot be accomplished from the ground, it is important to
combine high- and low-frequency observations from ground-based and space-borne instruments. In this
work, I perform a study of several type III radio bursts that occurred in close succession on April 3,
2019. T use remote observations of type III radio bursts detected by the Low-Frequency Array (van
Haarlem et al.||2013] LOFAR) ground-based radio telescope and the Parker Solar Probe (Fox et al.[[2016
PSP) spacecraft during Encounter 2 to study the sources of these radio emissions and to investigate the
physical conditions responsible for their generation. Additionally, I incorporate results of two steady-
state models of the solar corona: the potential field source surface (PFSS) model |Altschuler & Newkirk
(1969); [Schatten et al.| (1969)) and the magnetohydrodynamic algorithm outside a sphere (MAS) model
Mikié et al.| (1999), to gain a better understanding of the coronal magnetic environment and its role in
the acceleration of electrons. The ground-based LOFAR imaging observations provide valuable insight
into the actual location of the burst sources. This research aims to expand upon current knowledge of the
electron beams responsible for triggering type I1I radio bursts and the coronal conditions they experience.
Gaining a deeper insight into this aspect is vital in comprehending other solar phenomena, such as solar
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energetic particles and solar wind, and how they influence the near-Earth space environment.

A number of recent studies investigate the physical mechanisms responsible for the generation of solar
type III radio bursts. For example, |Chen et al.| (2013) investigated the association of type III bursts with
flaring activities in February 2011, via combined multi-wavelength observation from the SDO instru-
ments, as well as Wind/WAVE and ground-based instruments. They found that the SDO measurements
indicated that type III emission was correlated with a hot plasma (7 MK) at the EUV jet’s footpoint.
By using a triangulation method with the Wind and the twin STEREO spacecraft, |Bonnin et al.| (2008)
reported the first measurements of the beaming characteristics for two type III bursts between 2007-2008,
assuming the source was located near the ecliptic plane (see also [Reiner et al.| (2009)). They concluded
that the individual type III bursts have a broad beaming pattern that is roughly parallel to the Parker
spiral magnetic field line at the source. |Saint-Hilaire et al.| (2012)) conducted a study on almost 10,000
type III bursts observed by the Nancay Radioheliograph between 1998 and 2008. Their analysis revealed
discrepancies in the location of type III sources that may have been caused by a tilted magnetic field.
Additionally, they found that the average energy released during type III bursts throughout a solar cycle
could be comparable to the energy produced by non-thermal bremsstrahlung mechanisms in nano-flares.
Morosan & Gallagher| (2017)) utilized LOFAR data to investigate the statistical characteristics of over
800 type III radio bursts within an eight-hour period on July 9, 2013. They discovered that the drift
rates of type III bursts were twice that of type S bursts and plasma emission was the primary emission
mechanism for both types.

Pulupa et al| (2020)) introduced a statistical overview of type III radio bursts during the first two
PSP solar encounters. While the first encounter in November 2018 revealed a small number of bursts,
the second encounter in April 2019 exhibited frequent type III bursts, including continuous occurrences
during noise storms. They reported the characteristics of type III bursts with spectral and polarization
analysis. [Krupar et al.| (2020) performed a statistical survey of 30 type III radio bursts detected by
PSP during the second encounter in April 2019 and estimated their decay times, which were used to
estimate the relative electron density fluctuations in the solar wind. They localized radio sources using
a polarization-based-radio triangulation technique, which placed the sources near the modeled Parker
spiral rooted in the active region AR12738 behind the plane of the sky as seen from Earth. |Cattell
et al.| (2021)) explored correlations between type III radio bursts and EUV emission in the solar corona.
Using coordinated observations from PSP, SDO, and Nuclear Spectroscopic Telescope Array (NuSTAR)
on April 12, 2019, they identified periodicities in EUV emission correlated with type III burst rates.
The findings suggested impulsive events causing heating and cooling in the corona, possibly nano-flares,
despite the absence of observable flares in X-ray and EUV data, which implies periodic non-thermal
electron acceleration processes associated with small-scale impulsive events.

Harra et al. (2021) explored the origin of the type III radio bursts I am tackling in this chapter
and found that electron beams that triggered radio bursts may have emanated from the periphery of an
active region that showed significant blue-shifted plasma. More recently, [Badman et al.| (2022) observed
a distinct type III radio burst using the PSP and LOFAR between 0.1 and 80 MHz on April 9, 2019,
around 12:40 UT, six days after the occurrence of the event analyzed in our study. While no detectable
flare activity was linked with the event, a type III noise storm was ongoing during the PSP encounter
2. The authors determined the type III trajectory and reconstructed its source using observations from
Wind and STEREO spacecraft, as well as measuring related electron enhancement in situ.

In the last few years, I have witnessed the emergence of modern instruments, such as LOFAR and
PSP, that have allowed for the observation of solar radio emissions with higher sensitivity from a better
vantage point. Although type III bursts have been extensively studied Dabrowski et al.| (2021)), there are
still some unresolved issues regarding the exact mechanism of type III emissions. For example, it is not
yet clear how the electrons are accelerated to the high energies required to generate type III radio bursts
or what role the coronal magnetic field plays in this process. Furthermore, there are inconsistencies
between the observations and the models, which need to be resolved in order to gain a more complete
understanding of the dynamics of the solar corona. Examples of these inconsistencies are the origin of the
type III radio bursts and the discrepancy between the estimated plasma densities from the models and
the observations. This chapter aims to address these unresolved challenges by using new observations
from LOFAR and PSP and models of the solar corona to study the physical mechanisms responsible for
the generation of type III bursts. The data analysis includes a combination of radio spectroscopy and
imaging techniques to study the frequency, temporal and spatial variations of the radio bursts.

This chapter is organized as follows. In Section [3.2] I describe the observations of type III radio bursts
made with LOFAR and PSP. In Section [3.3]I explain the data analysis and modeling techniques used to
study these events. In Section I present the results of our analysis, including an investigation of the
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potential physical mechanisms responsible for the generation of type III radio bursts and a comparison
of the observations with models of the solar corona. Finally, in Section I summarize our findings
and discuss their implications.

3.2 Observations

A number of studies focused on observing the solar radio emissions during the second encounter of the
PSP in late 2019 Krupar et al.| (2020); [Pulupa et al.| (2020); [Cattell et al. (2021); Harra et al| (2021));
Badman et al.| (2022)). In this study, our primary emphasis is directed towards investigating a set of type
IIT radio bursts that took place on April 3, 2019, during the time interval spanning from ~12:10 to 12:50
UT. This period coincided with the presence of two distinct active regions (ARs) on the Sun, denoted as
AR12737 and AR12738. AR12737 was situated on the Sun’s near side at coordinates E12°N06°. Notably,
this region had eight sunspots and exhibited a 8 magnetic configuration according to the Hale magnetic
classification |Hale et al.| (1919). On the other hand, AR12738 was positioned on the solar far side at
coordinates E140°N02°. Due to its remote location, detailed observations of the magnetic configuration
and activity within AR12738 were unattainable in this time frame.

T observed a group of intense type III radio bursts by four instruments (Wind/WAVES, PSP /FIELDS,
STEREO-A/SWAVES, and LOFAR/LBA) via a regular survey. In Figure I show the first type IIT
burst within the time of this study as observed by the four instruments. By taking the second derivative
of the light curve at a specific frequency channels, I determined the start time of the burst, which is
denoted by the vertical red dashed line. The frequency bands used for obtaining the start time at each
instrument are as follows: 6.97 MHz (Wind), 7.03 MHz (STEREO), 5.03 MHz (PSP), and 40.16 MHz
(LOFAR). I checked the relative orientations of the instruments with respect to Earth (Fig. [3.2). Since
the PSP and STEREO spacecraft were almost aligned (close in an angular sense) with the Sun, the
STEREO/EUVI image could be taken as what PSP would see (Fig. [3.3). Figure shows how the
solar disk looks like from the Earth perspective (using the SDO/AIA instrument) and from the eastern
side where the PSP and STEREO were located at that time (using the STEREO/EUVI instrument).
The right panel shows a closer view of AR12737 with the contours of the photospheric magnetic field
obtained from the Helioseismic and Magnetic Imager (HMI) on board SDO. From the GOES-15/XRS
and SDO/EVE instruments in the panels below, they also confirm that there is no flaring activity at
that time.

The solar disk was quiet, including only one AR that is visible with no X-rays and no EUV transient
emissions over this period. Nevertheless, the very sensitive LOFAR telescope detected a number of bursts
close to noon. I checked PSP data, and I found bursts there as well. Meanwhile, from the EUVI and
ATA images, I see that there are numerous small localized regions of relatively higher intensity (i.e.,
likely small-scale coronal brightenings spots or campfires; see [Young et al.| (2018); Madjarskal (2019);
Berghmans et al.| (2021)). In the next subsections, I introduce the PSP and LOFAR instruments and
their observations of the radio bursts.

3.2.1 PSP Observations

Parker Solar Probe (PSP) is a pioneering spacecraft with cutting-edge technologies, launched on August
12, 2018, aimed at helping to resolve key questions about solar corona and solar wind (Fox et al.[2016)).
To study the radio bursts, I used the level-2 data of the radio dynamic spectrum obtained from the
FIELDS instrument suite (Bale et al. |2016} [Pulupa et al.[2017), which can be downloaded from this
Websiteﬂ The data file is in CDF format and the unit of the data values is converted from V2/Hz to
dB units using the formula

I = 10 x log1o(I/10719) (3.1)

The minimum power spectral density (PSD) of 10716 V2/Hz is used as a threshold for radio bursts
according to Pulupa et al. (2020) for converting to decibels. Then, both the High-Frequency Receiver
(HFR: 1.3 — 19.2 MHz) and the Low-Frequency Receive (LFR: 10.5 kHz — 1.7 MHz) data are combined
into a single dynamic spectrum as shown in Figure with a full frequency range between 10.5 kHz -
19.2 MHz. The mean intensity value at each timestep over the full frequency range is subtracted from
each frequency channel to clean the spectrum and minimize the noise level.

PSP FIELDS data products: http://research.ssl.berkeley.edu/data/psp/data/sci/fields/
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Figure 3.1: Radio dynamic spectra for a single burst obtained from multiple instruments. The top-
left panel is from the LOFAR/LBA instrument, the top-right is from the PSP/FIELDS instrument, the
bottom-left is from the STEREO/SWAVES instrument, and the bottom-right is from the Wind/WAVES.
The vertical red dashed line denotes the start time of the burst.
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Figure 3.2: Top view of the spacecraft positions in the ecliptic plane at 12:15 UT on April 3, 2019, with
the Sun-Earth line as the reference point for longitude. The Earth’s location is representative of the
positions of LOFAR, Wind/WAVES, and GOES-15/XRS instruments. The spacecraft were connected
back to the Sun by a 400 km/s reference Parker Spiral. The black arrow represents the longitude of
AR12737 and the blue arrow represents the longitude of the AR12738. The gray dotted lines are the
background Parker spiral field lines. The black dashed spiral shows the field line connected to the
AR12737, and the blue dashed spiral is connected to the AR12738. The figure is generated using the
Solar MAgnetic Connection Haus (Solar-MACH) tool (Gieseler et al.[2023]).
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Figure 3.3: Exploring the X-ray and extreme ultraviolet (EUV) emissions from the Sun. The top panel
showcases a cutout region of the SDO/AIA 193 Aimage of the solar disk along with the STEREO-A
EUVI 195 Apoint of view. The white curve is the limb of the solar disk as seen by AIA from the right
side. The red and blue colors are the contours of the line-of-sight magnetogram from the SDO/HMI
instrument. The levels are (50, 100, 150, 300, 500, 1000) Gauss. The middle panel shows the X-ray
flux from the GOES-14 spacecraft shows minimum activity. The bottom panel shows the time series of
the ESP Quad band from the SDO/EVE instrument, which shows the solar irradiance in the extreme
ultraviolet (EUV) band.
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3.2.2 LOFAR Observations

The LOw Frequency ARray (LOFAR) radio telescope (van Haarlem et al.[2013) is a powerful tool
for studying the Sun at low radio frequencies ranging between 10 and 240 MHz. Its high sensitivity
and high time resolution have enabled the detection of various solar phenomena, including radio bursts
and CMEs, and the study of dynamic processes in the solar atmosphere on timescales of milliseconds.
The LOFAR dynamic spectrum from the beamformed radio observations is obtained by the Low-Band
Antenna (LBA: 10 — 90 MHz) and can be downloaded from the LOFAR long-term archive (LTA)H
The High-Band Antenna (HBA: 110 — 190 MHz) data are not available for that timeframe. For this
day under study, the LOFAR data are available between 11:42 — 13:27 UT. To clean the spectrum,
background subtraction is performed, which flattens the sensitivity (response) with the frequency of the
LBA antennas. Basically, the mean spectrum along each frequency band is calculated and subtracted
from the whole frequency band, the same applied to the PSP spectrum. This operation effectively
removes the constant background from the spectrum. Then a Gaussian smoothing filter is applied to the
spectrum using the scipy.ndimage.gaussian_filter function with a sigma value of 1.5, which helps to
reduce noise and variations in the data. After that, the PSP and LOFAR spectra are combined together
in a single plot within the same time interval. The bursts’ signals observed by the PSP occur earlier
than those at LOFAR. This is due to the fact that the PSP spacecraft is much closer to the Sun and
hence it detects the radio emissions earlier than LOFAR because of the shorter travel time of radio
signals from the Sun. Therefore, the PSP dynamic spectrum must be shifted with respect to the LOFAR,
observations based on a calculation of the relative time travel of the radio emission from the Sun to PSP
and to LOFAR. In addition, the time cadence of the PSP observations changes according to its distance
from the Sun. On that day, the PSP data cadence was 7 seconds, while LOFAR’s is 1 second. Therefore,
the LOFAR dynamic spectrum was down-sampled to 7 seconds to match the time resolution of the PSP.
Figure [3:4] shows the resulting combined LOFAR-PSP spectrum on a logarithmic y-axis. The LOFAR
LBA frequency ranges between 19.82 — 80.16 MHz and for the PSP is 10.55 kHz — 19.17 MHz.

In order to detect the type III radio bursts automatically from the combined dynamic spectrum, I
applied the [Zhang et al.| (2018) algorithm based on the probabilistic Hough transformation that detects
vertical bright edges in images, within a certain degree of deviation from the vertical direction.

3.3 Methods

3.3.1 Imaging of radio sources

As part of our task, I developed an automated pipeline consisting of several modules that not only
preprocessed and calibrated the LOFAR interferometric data to produce cleaned images of the Sun in
the radio band (Zhang et al|[2022a), but also utilized the resulting data to find the trajectory of the
radio sources and sample the magnetic field and plasma parameters at their respective locations through
modeling and simulations in subsequent modules.

First, I ran the burst detection algorithm (Zhang et al. 2018]) E| on the combined dynamic radio
spectrum of LOFAR and PSP (Fig. to find the characteristics of each type III burst. I converted
the spectrum into a binary map to isolate the bursts from the background. Then I applied the Hough
transformation to get line segments of the features. For each type III burst, the line segments are grouped
together into one group. To account for the interplanetary component within radio dynamic spectra,
I employed the Parker electron-density model (Parker||1960) assuming a fundamental emission. This
model enabled mapping between the time and frequency indices for each type III burst and subsequently
converted electron densities into radial distances. Finally, a least-squares fitting method was applied to
derive both the frequency drifts and the speed of the electron beams.

After this step, I did the same for the LOFAR dynamic spectrum only (Fig. to find the (f,t)
pairs for every type IIT burst. Then I took snapshot frequencies for each burst defined by a list of
60 central frequencies between ~ 20 — 80 MHz from LOFAR LTA for the interferometric imaging. I
obtained the interferometric data from LOFAR core and remote stations at the snapshot frequencies
for all type III bursts. I used the concurrent observations of the radio source Tau-A to calibrate the
interferometric observations. For that, I used the default preprocessing pipeline (van Diepen et al.[[2018,
DP3) for preliminary processing and calibrating the measurement sets (MS). Finally I obtained the

2LOFAR LTA: https://1ta.lofar.eu/
3Detection algorithm repository: https://github.com/peijin94/type3detect
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Figure 3.4: Automatic detection of type III radio bursts from the combined radio dynamic spectrum of
LOFAR and PSP instruments. The dashed horizontal lines separates the LOFAR frequency range (top)
and the PSP frequency range (bottom).

cleaned images of the radio sources by using w-stacking clean (WSClean) algorithm (Offringa et al.
2014) only at the time indices in the MS files that are equivalent to the snapshot frequencies.

Table 3.1: Characteristics of the type III bursts detected via the automatic algorithm from the combined
spectrum.

Burst Start Time End Time Start Frequency End Frequency Frequency Drift Beam Speed

D (UT) (UT) (MHz) (MHz) (MHz s~1) (c)
1 12:18:45  12:22:42 76.44 157 0.892 0.044
2 12:34:05  12:36:31 41.24 0.86 0.241 0.119
3 12:34:40  12:34:56 54.44 26.54 3.992 0.046
4 12:37:14  12:38:09 66.03 10.02 4.006 0.046
5 12:38:17  12:40:54 76.92 1.57 0.77 0.066
6 12:39:34  12:40:11 78.86 11.93 3.192 0.062
7 12:40:28  12:40:40 45.34 22.9 3.21 0.067
8 12:41:39  12:43:06 78.21 2.13 1.555 0.093
9 12:43:53  12:44:15 59.07 42.13 2.424 0.013

After processing and cleaning the interferometric measurements of LOFAR, I explored the observa-
tions of each burst individually. Out of the 60 frequency bands in the LOFAR LTA, I chose 54 frequency
bands that have unique integer numeric, between 19.92 - 80.08 MHz. For each burst, at each timestamp,
the nearest frequency of the fit model to the list of chosen frequencies is picked as the snapshot frequency
at that particular timestamp. This process was repeated for all the 16 type III bursts detected in the
LOFAR dynamic spectrum in order to obtain snapshot images for each type III burst (Fig. |3.6). For
each type III burst, I applied persistence imaging in order to create a continuous display of the radio
emissions (Thompson & Young|[2016).

Persistence imaging enables the creation of a clearer and more informative image. In the context
of a time-ordered series of images, a method of persisting pixel values can be employed as follows: for
each image, compare the value of each pixel to its corresponding value in the previous persistence image
in the series. If the pixel value in the current image is brighter than its corresponding pixel in the
previous image, replace the previous value with the current one; otherwise, retain the previous value.
This process generates a new image, referred to as the current persistence image, which serves as the basis
for the subsequent evaluation of the next image in the series. This evaluation involves a pixel-by-pixel
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Figure 3.5: Automatic detection of type III bursts observed by LOFAR. The red symbols along the fit
lines are the (f,¢) coordinates of the image snapshots shown in Figure

comparison between the current image and its associated persistence image, allowing for the identification
of any changes or patterns that may have occurred over time. The mathematical background is explained
in Appendix [A72]

In order to estimate the locations of the type III sources in 3D space, I combined observations
with modeling. T used magnetogram data from the Global Oscillation Network Group project (GONG)
(Harvey et al.|[[1996). T constructed a grid of footpoints on the GONG map over two longitudinal belts
around the two active regions AR12737 and AR12738, which are the two potential candidates source
regions for the group of type III bursts under study. These points are used as the seed points for tracing
the coronal magnetic field lines using pfsspy python packageﬂ which is a robust implementation in python
of the PFSS model developed by [Stansby et al.| (2020). Using the major and minor axes of the beam
size, I estimated the radius of the radio source using Equation which was used to approximate the
source size. Since I already obtained the (z,y) positions of the type III sources in the plane of the sky
(POS) through LOFAR observations, now it is necessary to determine their corresponding z position
to have an overall understanding of their spatial distribution. Therefore, I employed
’s approach here, assuming that the type III bursts were from harmonic emission. Firstly, I found
the radial distance of the radio source from the Sun in the POS (Eq. . Secondly, I calculated the
sources’ radial distance (rmoder) using the 2.5xNewkirk electron-density model (Newkirk| (1961}, [1967).
The 2.5 fold factor is taken to incorporate the effects of scattering and overdensity (streamers) beyond
the nominal Newkirk quiet Sun model. The MAS model results (Fig. |3.8) show streamers above the
eastern limb, supporting the inclusion of such a factor. Lastly, I estimated the z location of the type
III sources (Eq. . I proceeded with the 4z solution because the theory precludes emission behind
POS in this region of high-density gradients (i.e., the emission would be absorbed by passing through
the high-density regions of the corona). More details are explained in Appendix

Tsource = \/(brznajor + b%n'nor)’ (32)
Tpos = V/ (1‘2 +y2)7 (33)
2= /(12 ael — 72,5)- (3.4)

The result of the deprojection of the type III sources for the sixth burst are shown in Figure with
70% contours made for ten frequencies on the extrapolated magnetic field lines. The red dashed line is a
spline fitting curve that represents the trajectory of the centroids of the radio sources. The black arrow
points toward the Earth’s line of sight (LOS). It is worth to mention that the axes direction in the POS
of LOFAR images are different in the 3D space. The (x,y) coordinates in the POS are translated into
(y, z) in the 3D space, and z in the POS is translated into x in the 3D space.

4Pfsspy tool: https://pfsspy.readthedocs.io/
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Figure 3.6: Persistence imaging for the 16 type III bursts detected in the LOFAR dynamic spectrum.
The label shows the observation frequencies in MHz and times in (minutes:seconds from 12:00:00 UT).
Here, the color coding is not absolute, but rather each panel has its own color code.
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3.3.2 Modeling

To explore the characteristics of the coronal plasma environment during the studied events, I used the
Predictive Science Inc. (PSI) standard coronal solutions from MHD simulations originating from the
MAS code (Mikié¢ et al|[1999). The data are available on the PSI’s data archiv I obtained the PSI
MAS coronal solution (a thermodynamic-with-heating MHD model) on April 3, 2019, at 12:00 UT,
with the following simulation result Iljﬂ Initially, I calculated the angle between the burst’s source
radial vector and the LOS. Moreover, I calculated the complement angle, which is the separation angle
between the burst’s radial vector and POS from the Earth’s perspective. Subsequently, I utilized the
complement angle to derive the Carrington longitude (Thompson, W. T .[2006]), facilitating the extraction
of a longitudinal segment from the MAS datacube, as if it were in the POS. Following this, the selected
data slice was fed into the FORWARD model, a toolset responsible for generating synthetic coronal maps
of observable quantities describing the plasma state. For extracting the longitudinal slices from the MAS
data, I utilized the psipy python packageﬂ The MAS datacube is specifically defined on a spherical
grid and represents a steady-state MHD model. Owing to the inherent attributes of this datacube,
the utilization of the FORWARD toolset proves more practical and advantageous for our objective. In
Figure [3:8 I show the first radio contour of the sixth type III burst on top of the equivalent 2D maps for
six plasma parameters, as an example. The plasma parameters are, from left to right and from the top
to bottom: plasma density, plasma temperature, magnetic field strength, plasma beta parameter, the
total plasma pressure, and the Alfven speed, By taking the value of these physical plasma quantities at
the centroids’ coordinates of the type III sources at each frequency band, I obtained estimates of local
plasma conditions shown in Figure for the sixth type III burst, as an example.

3.4 Results and discussion

3.4.1 Detection and characterization of type III radio bursts

I found that the radio waves arrived at STEREO one minute before they arrived at Wind (Fig. .
However, the difference between the +2z and —z positions of the burst this close to the Sun in terms of
light travel time is ~10 seconds (~4 Rg), which is within the time resolution of the observations (1 min
time resolution). Thus, I cannot confidently conclude whether the emission arrived at one spacecraft
first and the other second.

Figure [3.4] shows the combined dynamic spectrum from both LOFAR and PSP. The free parameters
of the auto-detection algorithm do not have the same values as for detection the type III bursts in the
LOFAR spectrum alone. Upon visual examination, I observed that the detection algorithm effectively
identified type III bursts in the LOFAR dynamic spectrum (Fig. , but it had limitations in terms of
detecting type III bursts in the combined spectrum of the LOFAR and PSP, as well as missing segments
of the detected bursts and a few bursts entirely. This could be due to the increased frequency drift and
dispersion of the radio bursts at lower frequencies, which made it a challenging task for the detection
algorithm. I captured nine type III bursts from the combined dynamic spectrum and their characteristics
are reported in Table However, the detection algorithm performed better on the LOFAR dynamic
spectrum only and I traced 16 type III bursts.

3.4.2 Imaging of radio emission sources

Figure [3.6] shows the persistence imaging for the 16 type III bursts in the LOFAR dynamic spectrum
(Fig. [3.5). The observation frequencies and timestamps of the snapshot images used to produce the
persistence image are shown at the top-right corner of each image. From a visual inspection of Figure|3.6)
it seems that all the type III emissions originated from the same quadrant in the images (south-east
direction on the solar disk), although there was no active region presented at that location except for
a single active region nearby the central meridian (Fig. [3.3). Based on the imaging data presented in
Figure I chose one representative type III burst (No. 6) for a single-burst analysis in this chapter,
as it shares similarities in extent and location with other bursts.

To determine the spatial connection between the sources of radio emissions and the coronal magnetic
field, a three-dimensional (3D) projection of the radio source contours onto the extrapolated coronal

5Predictive Science Inc.: https://www.predsci.com/mhdweb/home . php
6Simulation result ID: hmi__med-cor-thermo2-std01_med-hel-poly-std01
"Psipy repository: [https://github.com/predsci/PsiPy

61


https://www.predsci.com/mhdweb/home.php
https://github.com/predsci/PsiPy

magnetic field via the PFSS model was employed (Fig. . The result indicates a discernible south-
eastward propagation of the radio sources relative to the Earth’s perspective, with no open field line
crossing the radio sources. In Figure [3.7] I performed an extrapolation only over the two active regions
presented on the solar surface at that time. However, when I extrapolated the magnetic field over the
entire solar surface, I noticed that the radio sources are aligned with the lower part of large-scale closed
field lines and are placed onto the open field lines emanating from the southern coronal hole. No open
field lines crossing the radio sources are observed. I note that the PFSS modeling is limited by the
fact that AR12738 is behind the limb on April 3 as observed from Earth. Consequently, the magnetic
data available to us could be around two weeks old or more. This might limit the reliability of PFSS
extrapolation for that region during that specific timeframe.

From Figure the results suggest several potential origins of these type III radio emissions: 1)
they could be triggered in a closed-field lines structure such as large-scale coronal loops, given that the
radio sources are aligned to closed-field lines geometry in the southern hemisphere; 2) they could be
triggered by electron beams that are accelerated from an open-field active region (Kong et al.[|2018]).
However, from the PFSS model, I found no evidence for magnetic connectivity from both ARs on the
Sun at that time; 3) they may result from electron beams that are accelerated in the corona due to
expanding magnetic fields from plasma upflows in the active region (Del Zanna et al.|[2011; [Harra et al.
2021)). Our findings indicate a notable inverse relationship between imaging quality and the level of solar
radio emission brightness (e.g., for type III bursts 10 and 13, for instance). This observation is due to
the leakage of solar radio emission into the side lobes of the calibrator beam, which disrupts the accuracy
of calibration solutions.

3.4.3 Plasma diagnostics and magnetic field analysis

Considering the observed alignment of radio sources in Figure and the case depicted in Figure [3.8
it becomes evident that radio sources at higher frequencies (indicating proximity to the Sun) align with
a streamer-like structure near the equator within the coronal model. This structure is characterized by
elevated plasma beta, reduced coronal temperature, and diminished Alfven speed. The coronal plasma
density was relatively homogeneous with no prominent structures, probably due to the model resolution.

The location of radio sources of all the bursts were in the same quadrant as seen from Earth. There-
fore, I assumed that the former description applies for all bursts. I also found that the radio sources
were confined between the equatorial sheet and the southern coronal hole and moving along that bound-
ary. Figure [3.9) shows the variability of the coronal plasma quantities at the radio sources’ centroids,
taken from FORWARD maps in Figures[3.8] at different frequencies for the sixth burst. To estimate the
error bars, I initialized random centroids, within the limits of the 70%-contours of the radio emissions,
to sample the plasma quantities at those locations. Then the standard error (SE) is calculated using
Equation where o is the standard deviation, and n is the number of points.

o
SE = T (3.5)

The coronal temperature was increasing with radial distance, which implies there may have been
some heating locally. The behavior of the coronal magnetic field, the plasma total dynamic pressure,
and the Alfven speed were decreasing over distance as expected. Finally the value of plasma beta
parameter started increasing sharply around 40 MHz, which implies that the plasma pressure became
more dominant than the magnetic pressure around that distance from the Sun (for a 2.5x Newkirk model,
it is 1.89 Ry assuming a fundamental emission, or 2.57 R assuming a harmonic emission).

The top-left panel of Figure shows a comparison between the density profiles of the MAS model,
the 2.5xNewkirk model and the theoretical expected density profiles under the fundamental and har-
monic assumptions. Although the Newkirk density model provided a useful approximation for determin-
ing the height of radio sources in the corona, it is not entirely accurate due to a number of its underlying
assumptions; for instance, the assumption of a steady state and the spherical symmetry of the corona,
which do not always apply. Therefore, I tried to use the MAS density values to estimate the depth along
the LOS of the radio source, since it is supposed to give a more realistic result. I found that the plasma
density obtained from the MAS and FORWARD modeling results were significantly lower compared with
the 2.5xNewkirk density model and the theoretical expected density obtained from the classical relation
in Equation where f, is the plasma frequency (in MHz) and n, is the electron density (in cm™3):

2
fle = (8.98 ip103> (3:6)
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The required density from the fitted Newkirk model is much higher (about ten times) than what
is obtained from the MAS model, even after accounting for the 2.5x enhancement already applied to
the standard Newkirk model. This implies the discrepancy cannot be fully explained by the density
enhancement factor alone. Furthermore, the imaging places the radio sources near a streamer which is
an overdense region in the MAS model, so it seems unlikely the source’s apparent location in the model is
wrongly attached to a less dense feature, as there are not denser options available. The apparent source
positions from the imaging are likely too high, possibly due to scattering effects (Kontar et al.[|2019]
2023; |Chen et al.|[2023)), which could lead to fitting an overly dense Newkirk model. Another potential
explanation is that there could be a stealth CME that pushed the coronal magnetic field outward,
allowing the plasma to follow it to be perceived as having a higher density than expected, and there was
not enough time for the magnetic field relaxation to occur (private communication with J. Magdalenié).
However, scattering alone does not seem to fully explain the large density discrepancy. While further
investigation is certainly needed regarding scattering and propagation effects on the radio waves, it is
interesting to report this significant discrepancy between the model and observations, as it highlights
limitations in the current modeling and suggests the need for additional physics to properly characterize
the density distribution. Resolving this discrepancy could lead to important insights into the true nature
of the corona.

3.5 Summary and conclusions

In this work (?), I analyze the characteristics of a series of type III bursts that occurred on April 3, 2019,
during the second near-Sun encounter period of PSP. The bursts were observed in dynamic spectra taken
with the PSP/FIELDS (2.6 kHz — 19 MHz) instrument, as well as in interferometric imaging with the
LOFAR (20 — 80 MHz) ground-based telescope, as part of a coordinated observing campaign. The series
of 16 separate weak bursts were observed over the span of ~ 20 minutes, during an otherwise relatively
quiet period. The solar disk as observed from Earth was dominated by a single active region near its
center. I combined the dynamic spectra for the LOFAR frequency range and the PSP frequency range
to study the solar radio emissions within the frequency range of 2.6 kHz — 80 MHz.

For the study, I developed a semi-automated pipeline, which allowed us to obtain the exact times
and frequencies of the bursts. These I used to align the PSP to the LOFAR observations and to gen-
erate interferometric images between 20 and 80 MHz. I performed data pre-processing of the PSP and
LOFAR dynamic spectra to resample and shift the data based on the relative location of the spacecraft
with respect to the Sun and Earth, and found an excellent temporal match between the two sets of
observations. Thus I automatically traced the type III bursts in the dynamic spectra algorithmically
and estimated frequency drift and the electron beam speeds. I found that frequency drifts remained
relatively uniform between the high-frequency (LOFAR) and low-frequency (PSP) observations, as well
as among the bursts, suggesting that they are related.

In addition, I imaged the type III emission at multiple frequency bands using the interferometric
observations from LOFAR to determine the locations of the sources in the solar corona. The type III
emissions observed were all found to occur in the same general region off the southeast limb of the
Sun, leading us to conclude that they shared a single source of electron beams low in the corona. The
potential origins of these emissions are varied and include: 1) small-scale impulsive events such as nano-
flares (Ishikawa et al.|2017; |Che||2018; |(Chhabra et al.2021); 2) plasma upflows from the active region
(Harra et al.[|2021); 3) coronal closed-loop structures (Wu et al.[2002); 4) electron beams accelerated from
interchange reconnection (Gopalswamy et al.|[2022al); 5) high-frequency Alfven waves and/or magnetic
reconnection in the outer corona (Morton et al.|2015; |Alielden & Taroyan|2022]).

Our magnetic extrapolation shows that there is no open potential field to either AR12737 or AR12738,
which is consistent with (Cattell et al.| (2021). Our findings are in line with the conclusions of Harra et al.
(2021), who proposed that the likely origin of these type III bursts is the AR12737 region. The type
I1T radio bursts in [Harra et al.| (2021)) occurred between April 1 and 4, are temporally aligned with the
emergence of AR12737 near the eastern limb of the solar disk.

While potential field source surface models provide valuable insight into the large-scale magnetic
topology, their reliability decreases near active regions where the field can deviate significantly from a
potential configuration. Therefore, the lack of open field connectivity directly to AR12737 suggested by
the PFSS model should be viewed with some caution.

This work complements those results by precisely locating the burst sources in the middle of the
corona. I used the Newkirk density model to estimate the height of the radio sources from the Sun of
one of the type III bursts as representative of all. Combining this with PFSS magnetic modeling, I found
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Figure 3.7: Different viewing angles for the deprojection of the radio sources of the sixth burst using the
2.5x Newkirk electron-density model on the PFSS solution. The black arrow points toward the Earth’s
LOS. The yz plane is the POS as seen from the Earth. The red dashed line is a spline curve fit for the
sources’ centroids. The red, black, and blue curves are the open northern, closed, and open southern
field lines, respectively. The opacity of the closed field lines is decreased for better visualization.
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Figure 3.8: Synthesized maps of plasma parameters obtained using the FORWARD toolset, with the
70%-contour of radio emission of the sixth burst at the first timestamp (12:34:06.8 UT) at the frequency
of 72.26 MHz depicted on top of the 2D POS cuts. The left column represents, from top to bottom,
plasma density, magnetic field, and the total plasma dynamic pressure. The right column represents,
from top to bottom, the temperature, plasma beta, and the Alfven speed.
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Figure 3.9: Coronal plasma parameters sampled from the 2D maps by the source centroids. The top
panel shows (from left to right) the plasma density profiles from the MAS model, 2.5% Newkirk model,
and the theoretical densities under the fundamental and harmonic assumptions, plasma temperature,
and magnetic field. The bottom panel shows, from left to right, the total plasma dynamic pressure,
Alfven speed, and plasma beta. The x-axis is inverted to demonstrate a progression of increasing radial
distance from the Sun as the observer moves towards the right.

good agreement between the centroids of the radio sources and the location of the southern open field
lines in the corona, which would be required to produce radio emissions at interplanetary wavelengths in
general. On the other hand, this location does not seem to be well connected to the AR itself, according
to the PFSS model.

I attempted to correct the radial distance of the radio sources from the Sun by replacing the Newkirk
model with more realistic MHD results from the MAS model, but I found that there is a significant
discrepancy between the Newkirk model profile fitted to the observations and the MAS density. This
could result from scattering lensing the apparent burst location to a higher altitude, thus, overestimating
the height of radio sources in the corona. The presence of type I1I radio sources at relatively high distances
in the corona, with plasma density higher than expected from the MAS model, suggests that there may
be missing information in the modeling. One possibility is the existence of a stealth CME that pushed
the coronal magnetic field outward, causing the plasma to appear denser than expected (see Dumbovié
et al.|(2021)) — or other non-obvious changes in large-scale coronal magnetic topology. These findings
demonstrate that scattering and propagation effects play a significant role in determining the location and
directionality of solar radio bursts (Kontar et al.|2019} |2023; |Chen et al[2023). Therefore, the discrepancy
between the observed and modeled density profiles could potentially be attributed to scattering and
lensing effects that make the radio sources appear higher in the corona than their true location. Further
investigation is required to disentangle these effects from limitations in the density models themselves.
Overall, accounting for scattering and refraction will likely lead to improved modeling of the corona and
solar radio bursts. In future work, I will also employ the time delay of arrival (TDoA) technique (Zhang
et al.|2019)) to estimate the radio burst source positions from multi-instrument observations and compare
that with the current methodology in this chapter. Solar Orbiter observations shall also be included.

High-fidelity interferometric radio imaging in metric-decametric wavelengths provides a powerful
method to characterize solar eruptive events. It is also becoming increasingly important for study-
ing relatively quiet periods, during which there may be elevated levels of in situ particle fluxes. The
ability to observe and image faint radio bursts such as those presented in this work, which may be related
to episodes of reconnection on the solar surface, and potentially to episodes of solar wind release, is a
testament to LOFAR’s power as a space weather instrument. In a future work, I will automate and
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use our method for studying hundreds of faint bursts observed with LOFAR and will investigate their
relation to small-scale activity on the solar surface.

Through a novel combination between the LOFAR imaging and MAS model results, I found that the
type III radio bursts experienced a weakening background magnetic field, decreasing solar wind dynamic
pressure and Alfven speed, increasing plasma beta and coronal temperature, and plasma rarefaction. The
radio sources appeared at larger radial distances than the models predicted, which suggests scattering
and density fluctuations are important when attempting to interpret the actual burst trajectory. The
discrepancies between the observed and modeled radial distances of the radio sources suggest refinements
are needed in the models to fully explain the radio imaging and modeling results. Overall, comparing the
LOFAR imaging and MAS modeling for these type III bursts motivates further analysis on additional
radio bursts to improve our understanding of the physical conditions that influence the propagation of
radio emissions in the corona.
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Chapter 4

Modeling and Forecasting of Solar
Energetic Protons

This chapter has two parts. In the first part, I describe a modeling study that we conducted on energetic
proton acceleration and propagation from the solar corona to 1 AU. For this modeling, we employ the
physics-based approach utilized in the first chapter, including the 3D coronal models and a 3D MAS-
MHD model run. With these models, we use the EPREM model to find the fluxes and spectra of energetic
protons at 1 AU. We then compare the modeling results with in-situ measurements. In the second part,
I describe a deep learning approach that I developed to forecast the integral flux of energetic protons in
three energy channels across three different forecasting horizons.

4.1 Introduction

CMEs represent significant phenomena in solar physics, captivating attention due to their prominent
role in solar activity. Traditionally, CMEs have been identified through white light observations, pro-
viding valuable insights into their characteristics (Vourlidas et al.[2003} |Zhang & Dere|2006; Bein et al.
2011). However, a comprehensive understanding of these eruptions requires examination across multiple
wavelengths, including ultraviolet and radio bands, where observations reveal additional facets of their
dynamics (Bastian et al.[[2001} [Veronig et al.[|2010)). Notably, EUV observations, facilitated by instru-
ments like the ATA on the Solar Dynamics Observatory, have become instrumental in capturing the early
stages of CMEs (Lemen et al.|2012; |Pesnell et al.|[2012).

CMEs, in their trajectory through the solar corona, can give rise to shock waves when their propa-
gation speeds surpass the local fast magnetosonic speed, observable as EUV waves or CBF's (Thompson
et al[/1998; Long et al[2011). These shock waves are crucial in the context of SEP acceleration. While
solar flares also contribute to SEP production, recent advancements in observations and numerical mod-
eling have reshaped the prevailing understanding. It is now recognized that, especially in their early
stages (below 5-10 Rg ), CMEs often drive shocks capable of accelerating SEPs to energies exceeding
100 MeV /n (Ontiveros & Vourlidas|2009; |Gopalswamy & Yashiro|2011; Battarbee et al.[2013; Kozarev
et al.|[2013; [Schwadron et al.[2014; [Kong et al.|2017).

Previous research has primarily focused on characterizing the dynamics of CMEs and their associated
shocks within the solar corona, utilizing advanced observations spanning white light, EUV, and radio
wavelengths (Vourlidas et al. [2003; |[Zhang & Dere [2006; [Bein et al.[|2011). The relationship between
CMEs and shock waves, particularly CBFs, has been a subject of in-depth investigation. Notably,
Kozarev et al.| (2019) conducted a comprehensive study of nine distinct western CBF events, employing
the DSA model proposed by |Kozarev & Schwadron| (2016). Their findings revealed variations in SEP
production among events, coupled with evolving patterns over the course of each event. Moreover, the
acceleration efficiency demonstrated a strong dependence on the diverse coronal environments traversed
by the propagating shock waves.

Building upon the groundwork laid by Kozarev et al.| (2019), this present study extends its scope
by modeling the dynamics of CBF-related shock/compression waves and particle acceleration up to
10 R . This advancement involves integrating outcomes with a comprehensive numerical particle trans-
port model, allowing for comparisons with in situ observations. This marks a significant enhancement in
our methodology, representing the first validated extension of Sun-to-Earth physics-based modeling for
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SEP acceleration and transport within our current understanding of solar physics (Kozarev et al.|[2022).

In the quest to understand the mechanisms through which SEPs are produced by coronal shocks
throughout the inner heliosphere, considerable progress has been made. Traditionally, the prevailing
assumption was that SEP acceleration primarily occurred in interplanetary space, driven by in situ
measurements of Energetic Storm Particle (ESP) fluxes during encounters with IP shocks by spacecraft.
However, recent advancements in observations and numerical modeling have reshaped this understanding.

CMEs emerge as the principal contributors to the generation of SEPs, encompassing ions and electrons
with energies several orders of magnitude beyond the thermal coronal plasma (Reames|[1999)). While
solar flares also contribute to SEP production during solar eruptions, CMEs predominantly facilitate
SEP generation within the magnetized shock waves they instigate and in plasma compressions resulting
from their expansive forces. The prevailing assumption that the majority of SEP acceleration transpired
in interplanetary space has been challenged by the revelation that, particularly in their initial stages
(below 5-10 R ), CMEs frequently induce shocks capable of accelerating SEPs to energies surpassing
100 MeV /n (Ontiveros & Vourlidas|2009; |Gopalswamy & Yashiro|2011; Battarbee et al.|2013; [Kozarev
et al.|[2013} |Schwadron et al.[2014; [Kong et al.|2017).

Efforts have been directed towards characterizing the dynamics of CMEs and the accompanying
shocks within the solar corona, employing increasingly sophisticated observations spanning white light,
EUV, and radio wavelengths. This exploration aims to deduce early-stage SEP production in the solar
corona (Kozarev et al.[2013; |Schwadron et al.[2015). In a notable contribution, [Kozarev et al.[(2019)) con-
ducted an in-depth study of nine distinct western CBF events, utilizing the Diffusive Shock Acceleration
(DSA) model proposed by Kozarev & Schwadron! (2016). Their findings highlighted variations in SEP
production among events, along with evolving patterns over the duration of each event. Importantly,
the acceleration efficiency exhibited a strong dependence on the diverse coronal environments traversed
by the propagating shock waves.

This study, led by Kozarev et al.| (2022)), advances the work of |Kozarev et al| (2019)) by extending
the modeling of CBF-related shock/compression wave dynamics and particle acceleration to 10 R . Our
approach involves coupling these results with a global numerical particle transport model and comparing
the outcomes to in situ observations. This represents a significant enhancement in our methodology,
marking the first validated extension of Sun-to-Earth physics-based modeling for SEP acceleration and
transport within our current understanding of solar physics.

Several models are available, or under development, for forecasting SEP, which use diverse approaches
and serve different objectives. These models comprise computationally complex physics-based models,
quick and simple empirical models, Machine Learning (ML)-based models, and hybrid models that com-
bine different approaches and produce different types of outputs, including deterministic, probabilistic,
categorical, and binary. Deterministic models always generate the same output without any randomness
or stochastic components, such as predicting the SEP flux at a specific moment or the arrival time of
SEP. On the other hand, probabilistic models provide a probability value that reflects the likelihood of
an SEP event occurring. However, replicating SEP fluxes at a specific time is still a significant challenge
for current models.

An excellent review on SEP models and predictive efforts was recently published by Whitman et al.
(2023), which summarizes the majority of the existing models. For instance, [Papaioannou et al. (2022)
introduced the Probabilistic Solar Particle Event Forecasting (PROSPER) model, which is incorporated
into the Advanced Solar Particle Event Casting System (ASPECS)E The PROSPER model utilizes a
Bayesian approach and data-driven methodology to probabilistically predict SEP events for 3 integral
energy channels >10, >30, and >100 MeV. The model’s validation results indicate that the solar flare
and CME modules have hit rates of 90% and 100%, respectively, while the combined flare and CME
module has a hit rate of 100%. [Bruno & Richardson| (2021) developed an empirical model to predict
the peak intensity and spectra of SEP at 1 AU between 10 and 130 MeV, using data from multiple
spacecraft. The model is tested on 20 SEP events and shows good agreement with observed values.
The spatial distribution of SEP intensities was reconstructed successfully, and they found a correlation
between SEP intensities and CME speed.

Hu et al.|[(2017)) extended the Particle Acceleration and Transport in the Heliosphere (PATH) model to
study particle acceleration and transport at CME-driven shocks. They showed that the model can be used
to obtain simultaneous calculations of SEP characteristics such as time-intensity profiles, instantaneous
particle spectra, and particle pitch angle distributions at multiple heliospheric locations. Overall, results
resemble closely those observed in situ near the Earth but also yield results at other places of interest,
such as Mars, making it of particular interest to Mars missions. SPREAdFAST (Kozarev et al.[[2017,

LASPECS: http://phobos-srv.space.noa.gr/
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2022) is a physics-based, data-driven framework that utilizes EUV observations and models to simulate
SEP fluxes at 1 AU and to estimate energetic particle acceleration and transport to various locations
in the inner heliosphere. It generates time-dependent histograms and movies distributing them through
an online catalog. The accuracy and efficiency of the model were encouraging, but the highest energy
fluxes showed disagreement with in situ observations by the SOHO/ERNE instrument. However, the
framework has great potential for space weather science and forecasting.

In [Aminalragia-Giamini et al.| (2021), they used neural networks to provide probabilities for the
occurrence of SEP based on soft X-rays data from 1988 to 2013. They obtained >85% for correct
SEP occurrence predictions and >92% for correct no-SEP predictions. [Lavasa et al.| (2021) described a
consistent approach to making a binary prediction of SEP events using ML and conventional statistical
techniques. The study evaluated various ML models and concluded that random forests could be the
best approach for an optimal sample comprising both flares and CMEs. The most important features
for identifying SEP were found to be the CME speed, width, and flare soft X-ray fluence. [Kasapis
et al.| (2022) employed ML techniques to anticipate the occurrence of a SEP event in an active region
that generates flares. They utilized the Space-Weather MDI Active Region Patches (SMARP) dataset,
which comprises observations of solar magnetograms between June 1996 and August 2010. The SMARP
dataset had a success rate of 72% in accurately predicting whether an active region that produces a flare
would result in a SEP event. Moreover, it provided a competitive lead time of 55.3 min in forecasting
SEP events.

Engell et al.| (2017) introduced the Space Radiation Intelligence System (SPRINTS), a technology
that uses pre- and post-event data to forecast solar-driven events such as SEP. It integrates automatic
detections and ML to produce forecasts. Results show that SPRINTS can predict SEP with an 56%
probability of detection and 34% false alarm rate. Nevertheless, the HESPERIA REleASE tools provide
real-time predictions of the proton flux at L1 by using near-relativistic electrons as a warning for the
later arrival of protons and have been set to operation (Malandraki & Crosby|/2018). Historical data
analysis indicates high prediction accuracy, with a low false alarm rate of approximately 30% and a high
probability of detection of 63% (Malandraki & Crosby|[2018)).

Forecasting SEP is a critical task that serves operational needs and provides insight into the broader
field of space weather science and heliophysics. As emphasized in previous works, a high precision
forecasting model is urgently required to predict SEP flux within a period of time, given the risks
associated with these events. This highlights the critical requirement for a dependable forecasting system
that can mitigate the risks associated with SEP.

Scientists have been using physics-based and empirical models for decades to forecast SEP. However,
these models have certain limitations. Physics-based models require accurate input data and underlying
physical assumptions. In addition, the complexity of the physics involved and incorrect parameters may
introduce uncertainties that can lead to inaccurate predictions. On the other hand, empirical models
rely on historical data to make predictions. While they can be accurate sometimes, they may be unable
to account for changes in physical conditions related to the acceleration and propagation of SEP, which
can influence prediction accuracy. ML models, however, provide a different approach to SEP forecasting.
These models can analyze vast amounts of data, learning patterns from the data that are used, and
connections that may not be obvious to experts. Additionally, ML, models can adapt to changes in
underlying physical conditions, resulting in more accurate predictions as more data is collected; they also
provide relatively rapid forecasts, which allows for incorporation into a real-time forecasting workflow.

In the upcoming sections, I will explore the limitations in accuracy that arise from dealing with an
imbalanced dataset and low-resolution data. Specifically, the presence of intrinsic outliers in the time
series data pertaining to SEP flux poses a significant challenge in modeling. These outliers correspond
to occurrences of SEP events and, consequently, have an impact on the accuracy of predictions. Notably,
they often lead to an underestimation of the SEP fluxes, primarily due to the predominance of relatively
low values throughout the majority of the time interval.

In the first part, we extend the work in Chapter [2| on the kinematics of CBFs and expand on previ-
ous relevant investigations by modeling CBF-related shocks and particle acceleration up to 10 Ry Our
modeling approach incorporates coupling to a numerical model of particle transport throughout the he-
liosphere, with validation against in-situ spacecraft measurements. Our study implements, for the first
time, an extensive physics-based model linking CME-driven shock acceleration with the propagation of
SEPs from the Sun to Earth. In the second part, I present advanced deep learning models to forecast
the daily integral flux of SEP over a 3-day forecasting window by using bi-directional long short-term
memory (BiLSTM) neural networks, for 3 energy channels (>10, >30, and >60 MeV). Our models can
forecast the time-dependent development of SEP events in different energy domains, which can be used
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to model the space radiation profiles using frameworks such as BRYNTRN |Wilson et al.| (1988) and
GEANT4 (Truscott et al.[2000).

4.2 Early-Stage SEP Acceleration by CME-Driven Shocks

4.2.1 Overview

CMEs stand out as one of the most prevalent expressions of solar activity, attracting considerable atten-
tion in solar physics. Traditionally defined through white light observations (Vourlidas et al.|2003; Zhang
& Dere|2006; [Bein et al.[|2011)), these eruptions reveal diverse facets when examined across ultraviolet
and radio bands (Bastian et al[2001; [Veronig et al.|[2010]). Particularly noteworthy is their observation
in EUV light, a realm where telescopes like the AIA onboard SDO (Lemen et al.[[2012} |Pesnell et al.
2012) excel in capturing the early stages of CMEs.

CMEs, in their dynamic journey through the solar corona, can generate shock waves if their prop-
agation speeds surpass the local speed of information, typically the fast magnetosonic speed. These
shock waves manifest prominently in EUV observations as EUV waves or, more specifically, as CBFs
(Thompson et al.|[1998; [Long et al.||2011)). The intricate relationship between CMEs and these shock
waves forms a crucial aspect of solar physics.

As the primary contributors to SEPs, CMEs play a pivotal role in the energization of ions and electrons
to levels significantly exceeding the thermal coronal plasma (Reames|[1999). Flares also contribute to
SEP production during solar eruptions. The acceleration of SEPs in CMEs predominantly occurs within
the magnetized shock waves they propel, as well as in plasma compressions induced by the CMEs.
While historical perspectives inferred the bulk of SEP acceleration in interplanetary space from in situ
observations of energetic storm particle (ESP) fluxes during the traversal of interplanetary shocks by
spacecraft, recent advancements in observations and numerical models have reshaped this understanding.

Over the past fifteen years, sophisticated observations and modeling techniques have revealed that, in
their early stages (below 5-10 R, ), CMEs often drive shocks (Ontiveros & Vourlidas|2009; |Gopalswamy
& Yashiro|2011)). These shocks, in turn, exhibit the capability to accelerate SEPs to energies exceeding
100 MeV/n (Battarbee et al.|2013; [Kozarev et al.|2013} [Schwadron et al.||2014; Kong et al.||2017).
Consequently, recent research has focused on characterizing the dynamics of CMEs and the associated
shocks in the solar corona, employing advanced observations spanning white light, EUV, and radio
wavelengths.

Building upon this foundation, efforts have been made to estimate the early-stage SEP production
in the corona (Kozarev et al.|2013; |Schwadron et al.[[2015). In a notable contribution, Kozarev et al.
(2019) conducted an in-depth study of nine distinct western CBF events. Utilizing the diffusive shock
acceleration (DSA) model proposed by |[Kozarev & Schwadron| (2016), they simulated particle acceleration
in the very early stages, while the CMEs were still below 1.5 R . Their findings highlighted variations
in SEP production among events, along with evolving patterns over the event’s duration. Importantly,
the acceleration efficiency exhibited a strong dependence on the diverse coronal environments traversed
by the shock waves.

This study, led by Kozarev et al.| (2022)), advances the work of |Kozarev et al| (2019)) by extending
the modeling of CBF-related shock/compression wave dynamics and particle acceleration to 10 R . Our
approach involves coupling these results with a global numerical particle transport model and comparing
the outcomes to in situ observations. This represents a significant enhancement in our methodology,
marking the first validated extension of Sun-to-Earth physics-based modeling for SEP acceleration and
transport within our current understanding of solar physics. In order to analyze particle fluxes at 1 AU
and compare them with observational data, we employ the SPREAdFAST framework that is explained
in Chapter [2|

The purpose of the SPREAdFAST framework is to model and analyze the particle fluxes from the
Sun to Earth, specifically focusing on SEP events. The project combines detailed observations of CBF's
with modeling of the coronal plasma and the resulting SEP production and interplanetary transport.
The SPREAdFAST framework utilizes physics-based modeling to simulate the evolution of the plasma
upstream of the coronal shock associated with CBFs and the subsequent acceleration and transport of
protons from the Sun to 1 AU. It incorporates various components such as EUV observations, shock
dynamics, particle acceleration, and interplanetary transport. The project aims to provide a better un-
derstanding of the processes involved in SEP events and improve forecasting capabilities for these events.
By modeling a large number of events and comparing the model results with in situ observations, the
SPREAdFAST project contributes to the advancement of Sun-to-Earth physics-based modeling of SEP
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acceleration and transport. Overall, the SPREAdFAST project is a comprehensive effort to study and
simulate the complex phenomena associated with SEP events, with the goal of enhancing our knowledge
and predictive capabilities in this field.

The SPREAdFAST framework includes the following components:

e CBF Kinematics and Geometric Modeling: This component characterizes the kinematics of CBF's
using observations from the ATA instrument. It estimates the CBF kinematics, including the front,
peak, and back edge positions over time, as well as the mean intensity and thickness of the CBFs.

e Coronal Shock and Particle Acceleration Modeling: This component models the evolution of the
plasma immediately upstream of the coronal shock associated with CBFs. It incorporates the
physics of coronal shock waves and the process of particle acceleration through diffusive shock
acceleration.

e Interplanetary Particle Transport Modeling: This component simulates the transport of accelerated
particles from the corona to 1 AU, which is the distance between the Sun and Earth. It takes into
account the interplanetary magnetic field and other factors that influence particle propagation.

e Comparison with Observations: The framework compares the modeled particle fluxes and fluences
at 1 AU with observations from instruments like the SOHO and the Energetic and Relativistic
Nuclei and Electron (ERNE) instrument. It evaluates the accuracy of the model predictions by
calculating metrics such as the Mean Squared Logarithmic Error (MSLE).

Overall, the SPREAdFAST framework combines detailed observations, physics-based modeling of coronal
shocks and particle acceleration, and interplanetary transport modeling to analyze and forecast SEP
events from the Sun to Earth.

4.2.2 FEvent Selection

Our study focuses on a carefully selected set of solar events to ensure the robustness of our analysis. We
initiated the event selection process by identifying proton events within the energy range of 17-22 MeV,
as observed by the Solar and Heliospheric Observatory/Energetic and Relativistic Nuclei and Electron
(SOHO/ERNE) instrument during the period spanning 2010-2017. This initial screening yielded a total
of 216 events.

To refine our dataset and concentrate on events with clear solar signatures, we excluded proton
events lacking associated flares, CMEs, and those devoid of EUV waves before the onset of SEP events.
This step resulted in the exclusion of 39 events, leaving us with 177 events for further consideration.
Further narrowing our focus, we excluded cases where EUV waves were absent or where EUV data was
not available, even if flares or CMEs had been identified. This decision aligns with the requirements
of the SPREAdFAST model, which necessitates the presence of an EUV wave for accurate analysis.
Consequently, this step reduced the dataset to 105 events. In the interest of precision and relevance, we
removed several events with uncertain EUV waves, deeming them more appropriate for investigations
related to different solar eruptions. This additional refinement brought the total down to 99 events.

A meticulous examination of the remaining dataset revealed 62 events with measurable near-limb or
off-limb CBF's, aligning with the capabilities of our analytical framework. These 62 events constitute
our final selection for in-depth analysis and interpretation, as outlined in Table 1 in our paper (Kozarev
et al.[|2022). For a comprehensive reference, this table provides detailed information for each event,
including the date, start and end times, and class of the associated flare. Additionally, it includes the
source location on the solar disk specified in helioprojective Cartesian coordinates. These key details were
sourced from the Heliophysics Events Knowledge Base, ensuring accurate and standardized information
for each event in our study.

4.2.3 Coronal SEP Acceleration

Having established plasma parameters along individual shock-crossing field lines, our study employs the
coronal DSA model (Kozarev & Schwadron|[2016; Kozarev et al.|2019) to calculate proton acceleration
dynamics from the low corona to 10 Rg . Specifically designed to utilize remote solar observations and
data-driven model output from the CASHeW framework, this model solves for the large-scale acceleration
of charged particles induced by CME-driven shocks.

The model incorporates time-dependent estimates of shock speed (Vipock), density jump ratio (r),
magnetic field strength (| B|), and shock angle (0py) for multiple shock-crossing field lines. Using these

72



parameters, the model computes the minimum shock injection momenta for particles. It takes as input
a particle distribution function and produces time-dependent distribution function spectra or fluxes as
output. The obtained solution (Equations 8-11 in dKozarev & Schwadron| (2016])) provides both the
first distribution function (f;) and momentum (p;) values for an initial momentum (pg). The model
iteratively solves for subsequent values (f; and p;) at time steps separated by the observational cadence
ot of the instrument (in this case, SDO/AIA). The model is executed for each individual shock-crossing
field line, based on observed and calculated parameters at a single shock-crossing point along it. Flux
spectra at each time step are then computed, and the model’s validity has been confirmed through its
application in the analysis of several SEP events.

4.2.4 Input Data and Spectral Fitting

The model relies on input data derived from observations-based suprathermal proton spectra obtained
from 1 AU fluxes recorded by the SOHO/ERNE instrument (Torsti et al|[1995). These spectra are
acquired during the 24-hour period of quiet time preceding each SEP event. Power laws are fitted to each
suprathermal spectrum within the energy range of 0.056-3.0 MeV and scaled to a distance of 1.05 Rg ,
assuming a simple inverse square dependence on radial distance to conserve flux. While the current
implementation does not consider adiabatic cooling or other particle transport effects, acknowledging
their significance, a comprehensive exploration of these effects will be conducted in future studies to
determine general trends for forecasting.

The time-independent power law input spectra generated for the DSA model represent the suprather-
mal spectrum calculated for 1.05 Rs . These spectra are injected at all shock positions and distances
without modification to account for changing shock locations in the current model implementation. This
approach allows for a detailed examination of proton acceleration dynamics and flux evolution under the
influence of CME-driven shocks in the solar corona.

4.2.5 Transport of Accelerated SEPs and Comparison with ERNE Observa-
tions

The culmination of our modeling chain involves the transport of accelerated SEPs to 1 AU, followed by
a comprehensive comparison with particle observations obtained through the ERNE instrument. This
final phase is executed by utilizing the averaged fluxes derived from the entire event, exemplified here
with the illustrative case of the May 11, 2011 event.

To achieve this, we employ a modified version of the Energetic Particle Radiation Environment
Module model (Schwadron et al[2010, EPREM). The modified EPREM model facilitates the transport
of fluxes through a Parker-type static interplanetary medium. The particle injection from the DSA model
into EPREM is sustained throughout the duration of the coronal shock event. This model incorporates
essential effects such as pitch-angle scattering, adiabatic focusing and cooling, convection, streaming,
and stochastic acceleration.

The solver demands inner boundary conditions, with no initial conditions imposed. It features a
dynamic simulation grid where computational nodes are carried away from the Sun with the solar wind,
naturally adopting the shape of a three-dimensional interplanetary magnetic field. EPREM employs an
interplanetary magnetic field model, incorporating radial and azimuthal field components that fall off
with radial distance and a constant latitudinal component—the Parker spiral model.

The spatial grid structure is organized in nested cubes, subdivided into square arrays of square cells,
representing the propagation pathway of energetic particles. The inner boundary surface rotates with
the solar rotation rate and is expelled outward at the solar wind speed. At each time step, a new shell
of cells is created at the inner boundary, initiating its outward propagation. The inner boundary for the
EPREM simulation is fixed at 1.05 R , while the outer boundary varies for individual field lines due to
dynamic conditions, consistently exceeding 1 AU. The model’s credibility has been extensively validated
through its application in Solar Energetic Particle studies (Kozarev et al.[2010} Schwadron et al.||2014]).

For the EPREM model runs conducted on the 62 events in this study, standardized input parameters
were employed. These parameters include a mean free path (Ag) of 0.1 AU at 1 AU and 1 GV magnetic
rigidity, a constant solar wind speed (Vi,,) of 500 km s~!, proton number density (n) at 1 AU set at 5.0
ecm ™3, and a magnetic field magnitude (|B|) at 1 AU of 5.0 x 10~° G. The mean free path is additionally
scaled with proton rigidity and radial distance from the Sun to incorporate the magnetic turbulence
spectrum and its radial dependence (Zank et al.[1998; [Li et al.|2003} [Sokolov et al.[[2004; Verkhoglyadova
et al.[2009)), providing the parallel mean free path for the simulation.
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An energy grid with 20 points, logarithmically spaced between 1 and 200 MeV, and a 4-point pitch-
angle grid were utilized. A simulation time-step of 0.5 AU/c (approximately 4 minutes) with 30 sub-
steps allowed for accurate calculation of SEP propagation among nodes. These baseline simulations
encompassed all effects of diffusive transport, including adiabatic cooling/heating, adiabatic focusing,
pitch-angle scattering, convection with the solar wind, and streaming. Subsequent work will incorporate
the effects of perpendicular diffusion and particle drifts. The simulations were concluded at 9.6 hours
from the onset of the event at the Sun for all events, focusing on modeling their initial stages.

We used a combination of telescopic observations and dynamic physical models to simulate the
acceleration of SEPs in global coronal shock events. We first observed off-limb CBFs and studied their
interaction with the coronal plasma using synoptic MHD simulations. Based on these observations and
simulations, we then employed an analytical DSA model to simulate the SEP acceleration. The simulated
fluxes obtained from the DSA model were used as time-dependent inner boundary conditions for modeling
the particle transport to 1 AU. This approach allowed us to study the early-stage acceleration and
transport of SEPs from the Sun to 1 AU.

The criteria used to select the events for analysis in the study of the SPREAdFAST framework were
as follows:

e Proton events in the energy range of 17-22 MeV observed by the SOHO/ERNE instrument from
2010 to 2017 were initially identified.

e Events without identified flares and CMEs and without EUV waves preceding the SEP event were
excluded.

e Events without EUV waves or no EUV data, even if they had identified flares/CMEs, were also
excluded.

e Uncertain EUV waves that were not relevant to the specific solar eruption were dropped.

e Events with measurable near-limb or off-limb CBFs that could be analyzed with the SPREAdFAST
framework were selected.

In total, 62 events met the selection criteria and were included in the analysis.

The kinematics of CBFs are characterized using the methodology of the CASHeW framework. This
framework estimates the CBF kinematics by following the leading edge of the front on consecutive images.
It calculates the kinematics of the front, peak, and back edge of the CBFs over time, allowing for the
estimation of their time-dependent mean intensity and thickness. The kinematics are determined using
time-height maps (J-maps) generated with the CASHeW code for each event. The radial and lateral wave
front positions are measured in these J-maps, providing information on the radial and lateral positions,
speeds, accelerations, mean wave intensities, and wave thickness of the CBFs.

The methodology used to characterize the kinematics of CBFs is based on the CASHeW frame-
work. This framework involves analyzing observations from the AIA instrument on board the SDO. The
kinematics of CBFs are determined by tracking the leading edge of the front on consecutive images.
Time-height maps, also known as J-maps, are created by stacking columns of pixels in a desired direc-
tion from a solar image. The shape of the track on these J-maps depends on the direction and speed
of the CBF. The CASHeW code identifies the radial and lateral wave front positions over time in the
J-maps, allowing for the estimation of the CBF kinematics, including speeds, accelerations, mean wave
intensities, and wave thickness. A three-dimensional geometric model, known as the Synthetic Shock
Model (S2M), is then created based on the measured front positions, which describes the shock surface
at regular intervals. This model is propagated through the solar corona using a synoptic coronal MHD
model, providing information on the relevant parameters for coronal shock acceleration of SEPs.

In the SPREAdFAST DSA model, the shock-crossing field lines are modeled by dividing the shock
surface into three regions: the nose of the shock model, which consists of model points on the spheroidal
cap; and two flanks or zones, divided by a plane parallel to the Sun-Earth line. The plasma parameters at
the points on these three surfaces are examined separately. The model calculates the proton acceleration
along these shock-crossing field lines based on time-dependent estimates of shock speed, density jump
ratio, magnetic field strength, and shock angle. The model solves for the coronal charged particle
acceleration by large-scale CME-driven shocks and provides time-dependent distribution function spectra
or fluxes as output.

The method used to compare the modeled and observed proton fluences is by analyzing scatter plots
of the fitted power indices of the proton fluences from the EPREM model and the ERNE observations.
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The power law indices are compared between the two sets, and the onset hours for the proton events are
also compared. The comparison helps evaluate the performance of the modeling framework in predicting
the proton fluxes. Additionally, histograms and Mean Squared Logarithmic Error (MSLE) are used to
assess the agreement between the modeled and observed fluence spectra and onset times.

4.2.6 Results and Discussions

The study’s findings have important implications for understanding and predicting solar particle radia-
tion. By modeling the dynamics of shock waves and particle acceleration in the solar corona, the study
provides valuable insights into the factors that influence the efficiency of particle acceleration. The re-
sults highlight the significant role of the coronal environment in shaping the acceleration and transport
of SEPs from the Sun to Earth. One key implication is that the overlying coronal structure and the par-
ticle energy play a crucial role in determining where SEPs are produced during CME-driven shock and
compressive waves. The study shows that the large gradients in plasma parameters between neighboring
streamers, quiet-Sun areas, and coronal holes lead to continuous changes in the acceleration process.
This knowledge can help improve our understanding of the spatial distribution of SEPs and their energy
dependence. Furthermore, the study’s findings contribute to the development of physics-based models
for forecasting SEP events. The SPREAdFAST framework used in the study demonstrates the potential
for accurately simulating the evolution of SEPs from the Sun to 1 AU. This framework can be further
refined and utilized for early-stage forecasting of SEP events, providing valuable information for space
weather prediction and mitigation efforts. Overall, the study enhances our understanding of the com-
plex processes involved in solar particle radiation and provides a foundation for improving our ability to
predict and mitigate the impacts of these events on space weather.

The main discrepancies between the modeled and observed fluxes in the study are primarily seen at
higher energies. Above 15 MeV, there is a discrepancy in the time profile, with the observed proton fluxes
rising approximately 1 hour before the simulation. Additionally, the fluxes at the highest energies show
the most disagreement, mainly due to the slope of the increase and the onset times. These discrepancies
indicate the need for further improvements and refinements in the modeling framework to better match
the observations.

4.3 Solar Proton Flux Forecasting with Deep Learning Models

4.3.1 Data preparation

In this section, I describe the physical quantities, the types of inputs and their sources, as well as the
outputs I are forecasting. Some of the technical terms used in this study are explained further in the
appendices.

In order to capture the variability of solar activity, which modulates the SEP flux, I selected input
physical quantities that describe both the interplanetary medium and solar activity. These input features
can be categorized into two groups: remote signatures and in-situ measurements. The remote signatures
consist of the F10.7 index, as well as the long-wavelength (X)) and short-wavelength (Xg) x-ray fluxes.
The F10.7 index represents the flux of solar radio emission at a wavelength of 10.7 cm, measured in solar
flux units (sfu). To obtain the x-ray fluxes, I utilized 1- and 5-minute averaged data from the GOES
databas specifically at long wavelengths (1 - 8 A) and short wavelengths (0.5 - 4.0 A).

The in-situ measurements encompass the near-Earth solar wind magnetic field and plasma parame-
ters. These include the solar wind speed (in km s~1!), average IMF strength (in nT), and the integral
SEP fluxes at three energy channels: >10, >30, and >60 MeV, which correspond to the GOES channels
(in 1/cm? sec ster). These SEP fluxes were obtained from multiple spacecraft stationed at the first
Lagrange point (L1) throughout the study period. In particular, the IMF and plasma data in the OMNI
database are obtained from the IMP, Wind, and ACE missions, while the energetic particle fluxes are
obtained from the IMP and GOES spacecraﬂﬂ

To ensure a comprehensive dataset, I acquired hourly-averaged data covering a timeframe from De-
cember 1976 to July 2019, which spans the past four solar cycles. These data were sourced from the
Space Physics Data Facility (SPDF) OMNIWeb databaseﬂ hosted by the Goddard Space Flight Center.
This database provides a wealth of information, including integral proton fluxes, as well as an extensive

2GOES SXR Database: https://satdat.ngdc.noaa.gov/sem/goes/data/avg/
30OMNIWeb Data Documentation: https://omniweb.gsfc.nasa.gov/html/ow_data.html
4OMNI Database: https://omniveb.gsfc.nasa.gov
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range of solar wind plasma and magnetic field parameters. Lastly, the daily data on sunspot numbers
were obtained from the Sunspot Index and Long-term Solar Observations (SILSO) archiveﬂ maintained
by the World Data Center.

Figure [4.1] shows a plot for the timeseries data of all features. The top 3 panels are the logarithms
of the SEP integral flux at the 3 energy channels (log_PF10, log PF30, and log PF60), then the sunspot
number, the F10.7 index (F10.idx), the logarithms of the x-ray fluxes (log_Xs and log_Xl), the solar wind
speed (Vsw), and the average magnitude of the IMF (avg IMF). Throughout this chapter, I adopt the
convention that ”log” refers to the common logarithm with a base of 10. The gray shades refer to the
timespan of solar cycles. The blue, orange, and gold colors refer to the training, validation, and test sets,
respectively. The data split method will be explained shortly.

Since the input SEP data have been compiled from various spacecraft, it may have artifacts even
after processing. In particular, there are occasional jumps in the background level. There are also several
day-long gaps in the OMNI solar wind parameters from the early 1980s to mid-1990s where only IMP
8 data are available and this spacecraft spent part of each orbit in the magnetosphere. I are reasonably
confident that these issues do not influence the overall analysis significantly.

In deep learning applications, the dataset is split into 3 sets; namely the training set, the validation
set, and the test set. The training set is usually the largest chunk of data that is used to fit the model.
The validation set is a smaller chunk of data used to fine-tune the model and evaluate its accuracy to
ensure it is unbiased. The test set is the out-of-sample data exclusively used to assess the final model
when performing on unseen data (Ripley||1996).

After inspecting the correlation between the solar wind indices and the SEP integral fluxes in the
OMNIWeb database, I chose the top-correlated features with the SEP flux. The correlations were made
between the SEP fluxes and the individual parameters. Hence I took only timeseries of logarithms of
the protons’ integral flux at 3 energy channels (>10, >30, and >60 MeV), the timeseries of logarithm of
the X-ray fluxes, the F10.7 index, the sunspot number, the solar wind speed, and the average strength
of the IMF as input parameters to our model. The log of the SEP flux was used across the whole study.
The correlation matrices for the training, validation, and test sets are shown in Figure The X-ray
and proton fluxes were converted into the logarithmic form because it was more convenient than the
original form of data since the time series data were mostly quiet and had numerous sharp spikes, which
correspond to solar events. Based on a previous experience with NNs (Nedal et al.[2019)), T found that
training separate models for each target (output) feature can lead to better results. This is because
a dedicated model for each output feature can more easily learn the interrelationships between input
features and make more accurate predictions. Therefore, in our current study, I trained 3 separate
models, each one targeting the logarithm of the protons integral flux at a specific energy channel.

In order to ensure consistency across all features, all durations of the time series data of the physical
quantities were matched to be within the same time range. Subsequently, the dataset was resampled to
obtain daily averaged data, resulting in a significant reduction of the dataset size by a factor of 24. This
reduction facilitated expeditious training and yielded prompt results.

There were missing data values in the original dataset; for the Bgyg (~10.7%), Vsw (~10.5%),
F10.7-index (~ 0.08%), short-band x-ray flux (~8%), long-band x-ray flux (~9.8%), and proton fluxes
(~4.3%). The data gaps were linearly interpolated.

In timeseries forecasting, it is a common practice to take a continuous set of data points from the
main dataset to be the validation set and another smaller chunk of data to be the test set, for instance
in |Pala & Atici (2019)); Benson et al.| (2020); ?); |Zhu et al.| (2022). From our experiments, I got descent
results when I applied the same data split method, but the results were a bit biased toward the end
of the solar cycle 24 and the testing set was biased towards a quiet period. So, I adopted the 9-2-1
strategy, that is taking from each year 9 months to be added in the training set, 2 months to be added
in the validation set, and 1 month to be added in the test set. This is applied over the ~43 years of
data (Fig. , which yields 74.29% of the data for the training set, 16.2% for the validation set, and
9.51% for the testing set. By doing so, I eliminated the need to do cross-validation and hence, made the
training more efficient. It is worth to mention that the timeseries data must not be shuffled as that will
break temporal and logical order of measurements, which must be maintained.

4.3.2 Method

In this section, I introduce the data analysis methods used in this work. I start with explaining the
model selection phase, followed by a discussion of the bi-directional long short-term memory (BiLSTM)

5Sunspot Number Dataset: https://www.sidc.be/silso/home
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Figure 4.1: Data splitting for all input features, showing the training, validation, and testing sets. Daily
data from 1976-12-25 00:00 to 2019-07-30 00:00. The gray shading labels the solar cycles from SC21 to
SC24.

neural network architecture. The technical terminologies are described in the appendices.

The Bi-LSTM Model

Recurrent neural networks (RNNs) that support processing input sequences both forward and backward
are known as Bidirectional Long Short-Term Memory (BiLSTM) neural networks (Schuster & Paliwal
[1997). Regular RNNs (Hochreiter & Schmidhuber|[1997; [Kolen & Kremer|[2001) depend on the prior
hidden state and the current input to determine the output at a given time. The output of a BiLSTM
network, on the other hand, is dependent on the input at a given moment as well as the previous and
future hidden states. As a result, the network is able to make predictions using contexts from the
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Figure 4.2: Correlation matrices show the correlation between the features in the training, validation,
and test sets.

past as well as the future. Hence, accuracy is improving. Each BiLSTM layer consists of two LSTM
layers; a forward layer that processes the input sequences from the past to future, and a backward layer
that processes the input sequences from the future to the past, as illustrated in Figure to capture
information from both past and future contexts. The output from each layer is concatenated and fed to
the next layer, which can be another BiILSTM layer or a fully connected layer for final prediction.

BiLSTM networks are advantageous than traditional LSTM networks in a variety of aspects
|Schmidhuber| 2005} Thianle et al.|2020; |Alharbi & Csala/2021). First, as I demonstrate in this study, they
are excellent for tasks like timeseries forecasting, as well as speech recognition and language translation
(Wollmer et al.||[2013; |Graves & Jaitly| |2014; [Sundermeyer et al.|[2014; Huang et al.|[2018; [Nammous|
et al.|[2022) because they can capture long-term dependencies in the input sequence in both forward
and backward directions. Second, unlike feedforward networks, BiLSTM networks do not demand fixed-
length input sequences, thus being able to handle variable-length sequences better. Furthermore, by
taking into account both past and future contexts, BiLSTM networks can handle noisy data. However,
BiLSTM networks are computationally more expensive than regular LSTM networks due to the need
for processing the input sequence in both directions. They also have a higher number of parameters and
require more training data to achieve good performance.

QC/}
>
>
>
>

Figure 4.3: Architecture of a single BILSTM layer. The blue circles at the bottom labeled by (z¢, z1, x4,
..., ;) are the input data values at multiple time steps. The purple circles, on the other hand, are the
output data values at multiple time steps labeled by (yo, y1, ¥2, ..., yi). The dark green and light green
boxes are the activation units of the forward layer and the backward layer, respectively. The orange and
yellow circles are the hidden states at the forward layer and the backward layer, respectively. Both the
forward and backward layers composes a single hidden BiLSTM layer. The figure is adopted from

(2015)

The final dataset has 7 features, including the target feature, from December 25" 1976 to July 30"
2019, with a total of 15,558 samples (number of days). The training set has 11,558 samples, the validation
set has 2,520 samples, and the test set has 1,480 samples.

The input horizon of 270 steps (30 days x 9 months) was used. A data batch size of 30 was used, which
is the number of samples processed that result in one update to the model’s weights (Appendix [A.4.1]).
The model consists of 4 BILSTM layers with 64 neurons each, and an output dense layer with 3 neu-
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rons, representing the output forecasting horizon. The total number of trainable parameters is 333,699.
The number of training epochs was set to 50 because from experiments, the model stopped improving
remarkably after almost 50 epochs. Thus, there was no need to waste time and computational resources
to train the model for more than 50 epochs.

The ModelCheckpoint callback function was used to register the model version with the minimal
validation loss. The FEarlyStopping callback function was used to halt the model run when detecting
overfitting, with a patience parameter of 7. ReduceLROnPlateau callback function was used to reduce
the learning rate when the validation loss stops improving, with a patience parameter of 5, a reduction
factor of 0.1 and minimal learning rate of 1e=5.

Model Selection

To determine the most suitable model for our objective and provide justifiable reasons, I conducted the
following analysis. First I examined the naive (persistence) model, which is very simplistic and assumes
that the timeseries values will remain constant in the future. In other words, it assumes that the future
value will be the same as the most recent historical value. That was the baseline. Next I examined the
moving-average model, which calculates the future values based on the average value of historical data
within a specific time widow. This gives a little bit lower error.

Figure 4.4: Illustration of the sliding window technique for a sample of 10 timesteps, where each number
denotes a distinct time step. As an example here, the input horizon (blue color) length is 4 timesteps
and the output horizon length is 3 timesteps. The input window slides 1 time step at a time across
the entire data sequence to generate 4 distinct input and forecast horizon pairs. The purple, orange,
and green colors of the output horizon represent 1-day, 2-day, and 3-day ahead forecasting, respectively.
The timesteps of 1-day ahead forecasting across the data sequences are then concatenated into a single
timeseries list that is called 1-day ahead prediction. The same for 2-day and 3-day ahead.

After that, I went towards the machine learning (ML)-based models. For all the ML models, I
chose the Adaptive moment estimation (Adam) optimizer (Kingma & Ba|[2015)) as the optimization
algorithm due to its minimal memory requirements and high computational efficiency as it is well-suited
for applications that involve large number of parameters or large datasets. As a rule of thumb, I set the
optimizer’s learning rate to be 0.001 as it is usually recommended (7).

In order to prepare the data in a readable format to the ML models, I created a windowed dataset with
an input horizon of 365 steps representing 1 year of data and an output horizon of 3 steps representing the
forecast window of three days. I call this windowing method as Multi-Input Multiple Output (MIMO)
strategy, in which the entire output sequence is predicted in one shot. The MIMO strategy adopts the
sliding window method that was mentioned in |Benson et al.| (2020) in which each sequence is shifted by
one step with respect to the previous sequence until reaching the end of the available data (Fig. 4.4).
This approach minimized the imbalance of active days, with high SEP fluxes, and quiet days.

After experiments with different loss functions and evaluate their performance on our dataset, I chose
the Huber function as the loss function and the Mean Absolute Error (MAE) is used as the metric
function to monitor the model performance. I used the Huber function because it is robust and combines
the advantages of both Mean Squared Error (MSE) and MAE loss functions. It is less sensitive to outliers
than MSE, while still being differentiable and providing gradients, unlike MAE. Since our data is noisy
and contains outliers that may negatively impact the model’s performance, the Huber loss function is a
good choice.

I examined various neural network models to determine the optimal architecture for our task. Initially,
I started with a simple linear model comprising of a single layer with a single neuron. However, this model
did not yield satisfactory results. I then explored a dense ML model consisting of two hidden layers,
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Figure 4.5: Benchmarking of 10 models, shows the Huber loss for the validation and test sets.

each with 32 neurons and a RelU activation function. Next, I experimented with a simple RNN model
with the same number of hidden layers and neurons. To find the optimal learning rate, I utilized the
LearningRateScheduler callback function and discovered that a rate of 1.58e~* under the basic settings
minimized the loss. I proceeded to examine stateful versions of RNN, LSTM, and BiLSTM models
with three hidden layers, each with 32 neurons and a learning rate of 1.58¢~*. In addition, I explored
a hybrid model that consisted of a 1-dimensional convolutional layer with 32 filters, a kernel size of
5, and a RelU activation function. I combined this with a two-hidden layer LSTM network with 32
neurons each and a learning rate of 1.58e~%. I experimented with Dropout layers but did not observe
any significant improvement in the results. Finally, I evaluated a BiLSTM model with five hidden layers,
64 neurons each, and a learning rate of 0.001. Based on the evaluation of all the models on both the
validation and test sets (Fig. [4.5] and Table [A.2)), I selected the BiLSTM model for further refinement.
More details on the final model architecture and hyperparameters are explained in the Appendix
Figure presents a comparative analysis of the Huber loss within the validation and testing sets across
the ten aforementioned models. T used several evaluation measures to assess our models since each metric
provides valuable insights into the accuracy and performance of the forecasts (Appendix, helping
to identify areas for improvement and adjust the forecasting models accordingly.

4.3.3 Results and discussion
Long-term forecasting

The benchmarking in Figure [£.5]showed that, in general, the ML-based methods were not much different.
On the other hand, the persistence model and moving average model resulted in the highest errors
compared with the ML-based models, and their results were close to some extent. As I see, the BILSTM
model performed the best over both the validation and test sets compared with the other models.

I developed and trained 3 BiLSTM models to forecast the integral flux of SEP, one model per energy
channels. After the training was completed, I evaluated the performance of the models from the loss
curve (Fig. using the Huber loss (the left panel) and the metric MAE (the middle panel). During the
training, the learning rate was reduced multiple times via the LearningRateScheduler callback function
(the right panel). The left panel quantifies the discrepancy between the model’s predictions and the true
values over time. It shows how the Huber loss function changes during the training iterations (Epochs)
for the training and validation sets for the three energy channels so that each channel has one color. The
middle panel shows how the model’s metric MAE changes with training epochs. It is used to evaluate
the performance of the trained model by measuring the average absolute difference between the model’s
predictions and the true values, providing a single numerical value that indicates the model’s error at a
given epoch. The right panel shows how the learning rate of the model’s optimizer changes with epochs
via the LearningRateScheduler callback function, which changes the learning rate based on a predefined
schedule to improve training efficiency and convergence. The learning rate refers to the rate at which
the model’s parameters are updated during the training process. I noticed that at the epochs where the
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learning rate has changed, there were bumps in the loss curves across all the energy channels, which is
expected. This highlights the boundaries within which the learning rate yields better performance.

0.0040 Train, >10 MeV Train, >10 MeV 1073 >10 MeV
= = = Valid, >10 MeV = = = Valid, >10 MeV >30 MeV
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Figure 4.6: Left Panel - The Huber loss vs. the number of training epochs for the BiLSTM model for
the validation and test sets, for the 3 energy channels. Middle Panel - The mean absolute error (MAE);
the model’s metric vs. the number of training epochs. Right Panel - Shows how the learning rate of the
Adam optimizer changes over the number of epochs.

From experimentation, I found that the batch size and the optimizer learning rate are the most
important hyperparameters that have a strong influence on the overall model’s performance (Greff et al.
2016). In addition, adding dropout layers as well as varying the number of hidden layers and hidden
neurons resulted in only marginal improvements to the final model performance, while substantially
increasing training time and requiring greater computational resources.

The term batch size refers to the number of data sequences processed in one iteration during the
training of a ML model (Goodfellow et al.[[2016). Initially, a batch size of 64 was selected, however, 1
observed that the model produced better results when a batch size of 30 was used instead. This could
be related to the Carrington rotation, which lasts for ~27 days. There were ~570 Carrington rotations
between December 25" 1976 and July 30" 2019. Therefore, updating the model’s weights after every
Carrington rotation could be a reasonable choice for improving its performance. Figure [4.7 shows how
good the model predictions are (on the y-axis) compared with the observations of the validation set
(on the x-axis). The blue, orange, and gold colors refer to 1-day, 2-day, and 3-day ahead predictions,
respectively. The top panel is for the >10 MeV channel, the middle panel is for the >30 MeV channel,
and the bottom panel is for the >60 MeV channel. The left column is for the entire validation set, while
the right column is for the observations points >10 proton flux units (pfu). That is the threshold value
of proton flux as measured by the National Oceanic and Atmospheric Administration (NOAA) GOES
spacecraft to indicate severity of space weather events caused by SEP.

I found that, overall, the models performed very well. The R correlation was >0.9 for all points of
the validation set across the forecasting windows for the 3 energy channels. The R correlation was >0.7
for the observations points >10 pfu as well. However, the correlation between the modeled data and the
observations exhibited a decline as the forecast horizon increased, in accordance with the anticipated
result. To confirm the validity of the models, I performed the same correlation analysis between the
modeled data and the observations of the out-of-sample test set (Fig. , which was not given to the
model. Again, I found a high correlation across the forecasting windows for the 3 energy channels. The
points were more dispersed between 1 and 1.5 on the x-axis, which reflected in a bit lower correlation.
This might be a limitation in the current version of the model between that range of SEP fluxes since
the models underestimated the flux values within that range across all energy channels, possibly due to
the relatively smaller training samples with fluxes above 10 pfu compared with the majority of the data.

In order to see the temporal variation of the correlation between the modeled data and the observa-
tions, I applied a rolling window of 90 steps (3 months x 30 days/month = 1 season) that shows the
seasonal variation of the correlation, as shown in Figure [£.9] Here, I show only the 1-day ahead predic-
tions for the test set, for the 3 energy channels. I observe drops in the correlation factor synchronized
with the transition between solar cycles (e.g., particularly between ~1995-2000, which represents the
declining phase of the solar cycle 22 and the rising phase of the solar cycle 23). This could be related to
the fact that the low SEP fluxes during quiet times are more random and thus more difficult to forecast
(Feynman et al.|[1990; (Gabriel et al.|[1990; [Rodriguez et al.[2010; |[Xapsos et al.|[2012)).

During periods of low solar activity, the forecasting of low SEP fluxes becomes more challenging
due to their increased randomness. This difficulty arises from the reduced occurrence of conventional
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Figure 4.7: Correlation between the model predictions and observations for 1-day, 2-day, and 3-day
ahead for >10 MeV (top panel), >30 MeV (middle panel), and >60 MeV (bottom panel). The panels
in the left column represent all the points of the validation set, those in the right column represent all
the observations points with daily mean flux >10 pfu.
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Figure 4.8: Same as Figure but for the test set.
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SEP drivers, such as solar flares and CMEs. Studies have suggested that the most significant solar
eruptions tend to happen shortly before or after the solar cycle reaches its maximum (Svestkal[1995).
Additionally, sporadic increases in solar activity have been observed (Kane[2011)), which might contribute
to the diminished correlations observed in our research. There is clearly some factor that is influencing
the correlation during certain periods where there are no or only weak SEP events. However, it is not
obvious which physical phenomena are the cause rather than, for instance, some artifact of the data.
Understanding the interplay between these factors and their influence on SEP fluxes during periods of
reduced solar activity remains a critical area of research. It would be interesting to find what is reducing
the correlations, thus more investigation is needed.

Overall, the modeled data was correlated the most with observations at >60 MeV, then the second
rank was for the >10 MeV channel, and the third rank was for the >30 MeV channel. That could be
related to the relatively larger extent of drops in correlation at the >30 MeV channel. The decline in
correlation at the >30 MeV channel is consistent with the findings of |Le & Zhang| (2017). A summary of
the performance results of the models for both the validation set and test set is presented in Table

From the visual inspection of the test set examples (Fig. 4.10, [4.11} and [4.12)), T found that the
predicted onset time, the peak time, and end times of SEP events were highly correlated with those of
the observations, which implies that the model captured the temporal variations, as well as the trends
in SEP flux.

Table 4.1: Summary of the performance results of the models for the validation and test sets.

Validation Set
log PF >30 MeV

log PF >10 MeV log PF >60 MeV

Model Loss 0.0016 0.0010 0.0009
Model Metric 0.0329 0.0232 0.0218

1-Day 2-Day 3-Day 1-Day 2-Day 3-Day 1-Day 2-Day 3-Day
MAE 0.061  0.091 0.125 0.063 0.079 0.098 0.052 0.069 0.086
MSE 0.013  0.028 0.0564 0.010 0.031 0.055 0.009 0.027 0.047
RMSE 0.114 0.168 0.233 0.098 0.176  0.234  0.097 0.164 0.217
MAPE 22.156 28.104 34.721 13.039 18.590 22.735 10.036 13.994 16.731

Test Set
log PF >10 MeV log PF >30 MeV log PF >60 MeV

Model Loss 0.0014 0.0011 0.0010
Model Metric 0.0333 0.0283 0.0250

1-Day 2-Day 3-Day 1-Day 2-Day 3-Day 1-Day 2-Day 3-Day
MAE 0.072  0.099 0.125 0.0563 0.088 0.107 0.045 0.066 0.081
MSE 0.015 0.030 0.050 0.009 0.029 0.048 0.007 0.020 0.034
RMSE 0.121  0.172  0.224 0.094 0.170 0.218 0.082 0.141 0.184
MAPE 30.135 37.498 48.139 20.599 34.300 40.803 12.358 20.504 25.305

To get further insight into the model’s performance, I conducted an assessment of various skill scores,
including True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN). Addi-
tionally, skill score ratios such as Probability of Detection (POD), Probability of False Detection (POFD),
False Alarm Rate (FAR), Critical Success Index (CSI), True Skill Statistic (TSS), and Heidke Skill Score
(HSS). Detailed descriptions of these skill scores can be found in Appendix To extract individual
SEP events from the test dataset, I implemented a threshold-based clustering algorithm. This algorithm
uses the NOAA/SWPC warning threshold value of 10 pfu for the E >10 MeV channel. Upon analysis,
I identified the number of detected SEP events for each output forecasting window and calculated the
skill scores (Table[£.2)). In the true test set, I identified 12 SEP events.

The evaluation of the model revealed notable trends as the length of the output forecasting window
increased. The POD and CSI exhibited a declining pattern, indicating a reduced ability of the model
to accurately detect and capture positive events (SEP occurrences) as the forecasting horizon extended
further into the future. This suggests that the model’s performance in identifying and capturing true
positive instances diminishes with longer forecasting windows. Moreover, the POFD demonstrated an
increasing trend, indicating an elevated rate of false positive predictions as the forecasting horizon length-
ened. The model’s propensity to generate false alarms rose with the lengthening forecasting window,
leading to incorrect identification of non-events as positive events. Consequently, the TSS and HSS
exhibited decreasing values, signifying a deterioration in the model’s overall skill in accurately capturing
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Figure 4.9: Comparison between the model outputs and observations of the test set for the 3 energy
channels. In addition to the rolling-mean window correlation for 1-day ahead predictions.

and distinguishing between positive and negative instances. Overall, our skill scores are comparable with
those reported by previous studies (Table . Although the UMASEP model does better than ours
(i.e., has a higher POD), our FAR is much lower, thus, making fewer false alarms than the UMASEP

model.

Short-term forecasting

This work focuses on improving the prediction accuracy of the SEP integral flux, a critical aspect for
mitigating the potential hazards posed by high-energy protons originating from the Sun. Expanding on
previous work (Nedal et al.[[2023), the study utilizes a BILSTM NN model, incorporating high-resolution
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Figure 4.10: The model’s forecasts for the out-of-sample testing set for the >10 MeV channel are shown

at forecast horizons of 1 day, 2 days, and 3 days ahead,
years mentioned in the top-left side of the plots.

using samples of data from December in selected

Table 4.2: Confusion matrix for the energy channel >10 MeV predictions in the test set.

E >10 MeV No. events

TP TN FP FN

1-day ahead 15 21 1441 2 13
2-day ahead 13 14 1441 2 20
3-day ahead 5 5 1443 0 29
Table 4.3: Comparing the skill scores with previous models. The dashed entries mean the data is
unavailable (Whitman et al|(2023) for more details).
Model POD FAR TSS HSS POFD CSI Accuracy Precision
1-Day 0.618 0.087 0.531 0.732 0.001 0.583 0.99 0.913
Our BIiLSTM model 2-Day 0.412 0.125 0.287 0.553 0.001 0.389 0.985 0.875
3-Day 0.147 0 0.147 0.252 0 0.147 0.980 1
UMASEP-10 (Ntez[2011) 0.822 0219 — — — — —
PCA QPapaioannou et a1.||2018} 0.587 0.245  — 0.65 — — — —
SPARX (Dalla et al.|2017) 05 057 — — 032 03 — —
SPRINTS (Engell et al.|2017) 056 034 — 058  — — — —
REIeASE (]\/[alandraki & Crosby||2018} 0.63 0.3 — — — — — —
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Figure 4.11: The model’s forecasts for the out-of-sample testing set for the >30 MeV channel are shown
at forecast horizons of 1 day, 2 days, and 3 days ahead, using samples of data from December in selected
years mentioned in the top-left side of the plots.
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Figure 4.12: The model’s forecasts for the out-of-sample testing set for the >60 MeV channel are shown
at forecast horizons of 1 day, 2 days, and 3 days ahead, using samples of data from December in selected
years mentioned in the top-left side of the plots.
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hourly-averaged data for four standard integral GOES channels.

So far, the forecasting models, developed with 6-hour forecast window, integrate key input parameters
such as the F10.7 index, sunspot number, x-ray flux, solar wind speed, and IP magnetic field strength,
obtained from the OMNIWeb and GOES databases, spanning two solar cycles. Additional features,
including the location of active regions obtained from the NOAA daily reports, are introduced to enhance
predictive capabilities.

Rigorous evaluation involves independent out-of-sample testing, quantifying the impact of different
features on prediction results, and benchmarking against existing approaches. This comprehensive ap-
proach contributes to advancing our ability to forecast SEP flux and better understand its implications
for space weather.

I employed the 9-2-1 strategy to partition the data, allocating 9 months to the training set, 2 months
to the validation set, and 1 month to the test set for each year. This approach spans the 23-year period
from January 1996 to December 2018, resulting in 73.99% of the data for the training set, 16.44% for
the validation set, and 9.57% for the testing set. To facilitate model training, we formatted the data
using the MIMO strategy, predicting the entire output sequence in one iteration (Benson et al.|[2020)).
The model forecasts the logarithm of the integral proton flux, encompassing various energy channels.
However, for clarity in our poster, I specifically present results for the >10 MeV channel.

Figure illustrates the temporal correlation across six future windows, with Figure providing
a visual representation through a scatter plot. Additionally, Figure [f.15] showcases the variation in
prediction errors across these windows. For a more detailed examination, Figure [I.16] compares our
model’s 1-hour predictions with observations specifically for two sample SEP events in the >10 MeV
channel.
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Figure 4.13: Temporal heatmap shows a comparison between the model outputs and observations for
the rolling-mean window correlation of the integral >10 MeV proton flux at six predicting windows. The
top panel represents the validation set and the bottom panel represents the testing set. The numbers on
the y-axis are the mean R values.

Table 4.4: The MSE/MAE for the validation and test sets over six forecasting windows.

1-hr 2-hr 3-hr 4-hr 5-hr 6-hr
Valid. Set  0.078/0.238  0.086/0.254 0.091/0.263 0.098/0.273  0.102/0.280 0.115/0.299
Test Set 0.012/0.080 0.012/0.079 0.012/0.080 0.011/0.079 0.011/0.080 0.011/0.079

Predicting SEPs remains a complex task due to their non-linear nature. This study, however, demon-
strates promise by utilizing BiLSTM NNs. These models effectively captured the intricate patterns
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Figure 4.14: Correlation between model predictions and observations for the integral >10 MeV proton
flux of the validation (top two rows) and testing (bottom two rows) sets.
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within SEP data, leading to successful hourly-averaged integral flux predictions across various energy
channels. The model exhibited robust performance with low MSE values ranging from 0.011 to 0.012
in the test set. However, challenges remain, particularly during solar minimum phases, highlighting the
inherent complexity of SEP prediction. Despite this, BiLSTM networks showcase significant potential for
time series forecasting in heliophysics, especially when considering sequential data. Moving forward, we
aim to optimize the model by fine-tuning parameters and benchmarking it against established methods.
Additionally, extending the forecasting window and incorporating more energy channels with differential
energy forecasting will offer a more comprehensive analysis and improve model interpretability.

4.4 Conclusions

In Kozarev et al.| (2022]) we represents a pioneering multi-event exploration, presenting a comprehensive
examination of Sun-to-1 AU SEP simulations grounded in detailed coronal diffusive shock acceleration
and interplanetary propagation—a unique endeavor within the current body of knowledge. Investigating
62 distinct eruptive events, each characterized by an EUV CBF and notable enhancements in 1 AU
proton fluxes, our approach utilized the SPREAdFAST framework. This framework, originally designed
for forecasting early-stage SEP events, demonstrated its efficacy in the analysis of this extensive event
set.

The input spectra for coronal proton acceleration were derived from quiet-time suprathermal spectra
averaged over one to three days preceding each event. These averages were then scaled back to the Sun, as-
suming a simple inverse square proportionality to heliospheric distance. Utilizing an energy-independent
mean free path for coronal proton acceleration in the diffusive shock acceleration model, we observed
significant influences of solar corona conditions on proton acceleration. The gradients in plasma param-
eters among neighboring streamers, quiet-Sun regions, and coronal holes induced continuous changes in
the O angle along the shock wave surface, as well as in density and density enhancements.

The results from the DSA model, serving as time-dependent input to the interplanetary transport
EPREM model, were compared with in situ observations by the SOHO/ERNE instrument at 1 AU.
The overall alignment between model predictions and observations is promising, affirming the efficiency
and accuracy of the SPREAdFAST model chain. Nevertheless, discrepancies, particularly at the highest
energies, were observed, mainly attributed to variations in the slope of increase and onset times.

To address these discrepancies and enhance model precision, future work will delve into more re-
alistic modeling of events. This includes exploring time-dependent injection of source spectra at the
inner boundary of the EPREM simulation to better match observed decay rates. Acknowledging the
importance of three-dimensional transport effects in realistic interplanetary magnetic fields, perpen-
dicular transport will be incorporated in subsequent investigations. Furthermore, introducing location-
dependent output to accommodate varying connectivity between the source and observer will be explored.

The integration of geometric shock models with existing and novel observations of CME evolution in
the middle corona is anticipated to reduce uncertainties in the results. Ongoing efforts involve comparing
near-Sun in situ observations of quiet-time suprathermal populations from the Parker Solar Probe and
Solar Orbiter with 1 au fluxes, aiming to refine the estimation of input spectra. This holistic approach
contributes to advancing our understanding of SEP dynamics, paving the way for more accurate modeling
and forecasting capabilities in the realm of solar-terrestrial physics.

Forecasting the SEP flux is a crucial task in heliophysics since it affects satellite operations, astronaut
safety, and ground-based communication systems. It is a challenging task due to its non-linear, non-
stationary, and complex nature. Machine learning techniques, particularly neural networks, have shown
promising results in predicting SEP flux. In|Nedal et al.| (2023) I developed and trained BiLSTM neural
network models to predict the daily-averaged integral flux of SEP at 1-day, 2-day, and 3-day ahead, for
the energy channels >10 MeV, >30 MeV, and >60 MeV. I used a combination of solar and interplanetary
magnetic field indices from the OMNIWeb database for the past 4 solar cycles as input to the model.
I compared the models with baseline models and evaluated them using the Huber loss and the error
metrics in Appendix

The data windowing method I used, based on the MIMO strategy, eliminates the need to feed the
output forecast as input back into the model and that allows to do forecasting relatively far into the
future while maintaining decent results (e.g., the MSE is ranging between 0.007 and 0.015 for 1-day
forecasting in the test set, compared to an MSE of 0.236 for a persistence model. See Table . The
results show that the model can make reasonably accurate predictions given the difficulty and complexity
of the problem. The MSE was ranged between 0.009 and 0.055 for the validation set, and between 0.007
and 0.05 for the test set. The correlations between the observations and predictions were >0.9 for the
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validation and test sets (Fig. and Fig. [4.8]). Nevertheless, the mean temporal correlation was ~0.8
for the test set (Fig. . Although our models performed well, I observed a relatively large discrepancy
between the predictions and the observations in the >30 MeV energy band.

The findings of this study underscore the challenges encountered by the forecasting model in accu-
rately predicting SEP data over longer time periods. As the length of the output forecasting window
increased, the model’s ability to detect true positives and its overall skill in differentiating positive and
negative instances diminished. Additionally, the model displayed an elevated rate of false negative pre-
dictions, indicating an increased tendency to generate misses as the forecasting horizon extended. These
results highlight the importance of carefully considering the appropriate forecasting window length for
SEP data to ensure the model’s optimal performance. Our skill scores generally align with those from pre-
vious works (Table . There are variations in the metrics’ values across different studies, highlighting
the complexities and nuances associated with each study. Nevertheless, it is important to acknowledge
that the statistical significance of the results in this study is limited due to data averaging. Future studies
should consider incorporating hourly data, as this is likely to result in a greater number of identified
events. The model can provide short-term predictions, which can be used to anticipate the behavior
of the near-Earth space environment. These predictions have important implications for space weather
forecasting, which is essential for protecting satellites, spacecraft, and astronauts from the adverse effects
of solar storms.

Multiple techniques exist for identifying the optimal combination of hidden layers and neurons for a
given task such as empirical methods, parametric methods, and the grid search cross-validation method,
which I will explore in future work. The observed reduction in correlation necessitates further investi-
gation to determine its origin, whether stemming from tangible causal factors or potential aberrations
within the model or data. I plan to expand upon this work by performing short-term forecasting using
hourly-averaged data. This extension will involve integrating additional relevant features such as the
location and area of active regions and coronal holes on the Sun.

BiLSTM networks are particularly useful for tasks involving sequential data such as timeseries fore-
casting. Given their capacity to handle input sequences in both directions in time and capture long-term
dependencies, they are valuable in a broad range of applications. Nonetheless, one should carefully con-
sider their data requirements and computational complexity before adopting them. Our results emphasize
that the use of deep learning models in forecasting tasks in heliophysics are promising and encouraging,
as pointed out by [Zhang et al.| (2022b]).

This work is a stepping stone towards real-time forecasting of SEP flux based on the public-available
datasets. As an extension, I are currently working on developing a set of models that deliver near-real
time prediction of SEP fluxes at multiple energy bands, multiple forecasting windows, with hourly-
averaged data resolution, with a more sophisticated model architecture, as well as more features that
address the state of solar activity more comprehensively. I plan to extend the analysis to include more
recent data from solar cycle 25, in order to improve the accuracy of the models. In conclusion, our
study highlights the potential of using BiLSTM neural networks for forecasting SEP integral fluxes. Our
models provide a promising approach for predicting the near-Earth space environment too, which is
crucial for space weather forecasting and ensuring the safety of our space assets. Our findings contribute
to the growing body of literature on the applications of deep learning techniques in heliophysics and
space weather forecasting.
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Chapter 5

Summary

In this final chapter, I present a comprehensive summary of the key findings from the dissertation’s chap-
ters, providing insights into the analysis of EUV waves, solar type III bursts, and SEP modeling and
forecasting. The exploration of CBFs and the introduction of the Wavetrack tool have significantly con-
tributed to our nuanced understanding of solar dynamics. As we look towards the future, the extension of
the CBF dataset promises deeper insights into their kinematics, while the utilization of multi-wavelength
observations from LOFAR, PSP, and Solar Orbiter aims to unravel the origin and evolution of energetic
particles in the solar corona. Furthermore, the development of interpretable deep learning models, driven
by higher resolution data, holds the key to advancing SEP forecasting capabilities. These future endeav-
ors underscore the commitment to refining models, incorporating advanced data analysis techniques,
and leveraging cutting-edge observational tools to unlock new dimensions in our comprehension of space
weather phenomena.

Chapter [2| centered on the analysis of base-difference images obtained from the SDO/ATA instrument
to investigate EUV waves. Key kinematic parameters, including shock speed, acceleration, intensity, and
thickness, were computed. SOHO/LASCO measurements up to 17 Rg were incorporated to enhance the
understanding of shock plasma parameters. Kinematic measurements played a pivotal role in generating
3D geometric models of wavefronts and informing plasma diagnostics using MHD and DEM models.
The use of shock kinematic measurements facilitated the fitting of geometric spheroid surface models.
Parametrized relationships between plasma parameters were explored to uncover connections and inter-
dependencies. The study also introduced Wavetrack, an automated tool for identifying and monitoring
dynamic coronal phenomena. Its application to CBF events revealed proficiency in tracking complete
pixel maps, aiding in understanding CBF evolution. Limitations were acknowledged, and future work
will address them for enhanced versatility. The methodology holds promise for extensive application in
solar dynamic features and observational datasets.

Chapter [3] delved into the analysis of type III bursts during the second near-Sun encounter period
of PSP. Sixteen separate radio bursts were observed using the PSP/FIELDS instrument and LOFAR
ground-based telescope. A semi-automated pipeline facilitated data analysis, alignment, and interfer-
ometric imaging. Uniform frequency drifts among bursts suggested related origins. Interferometric
observations located type III emissions off the southeast limb of the Sun, hinting at a single source of
electron beams low in the corona. Magnetic extrapolation favored the active region AR12737 as the
source, aligning with previous studies. However, caution was advised regarding potential deviations in
magnetic field configurations near active regions. The study also explored discrepancies in observed and
modeled density profiles, attributing them to scattering and propagation effects. Future work will inte-
grate TDoA technique and Solar Orbiter observations for a more comprehensive analysis of solar radio
bursts.

The pioneering multi-event exploration in Chapter [] focused on Sun-to-Earth SEP simulations, in-
vestigating 62 eruptive events with EUV CBFs. The SPREAdFAST framework was employed to analyze
coronal diffusive shock acceleration and interplanetary propagation. Input spectra for coronal proton
acceleration were derived from quiet-time suprathermal spectra, exhibiting influences of solar corona
conditions on proton acceleration. Comparison with in situ observations demonstrated overall align-
ment, validating the efficiency of the SPREAdFAST model. Discrepancies at the highest energies were
noted, prompting future work to refine modeling and incorporate three-dimensional transport effects.
The study also introduced a BiLSTM neural network model for forecasting SEP integral flux at 1 AU,
showcasing promising results for short-term predictions with implications for space weather forecasting.
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In conclusion, the dissertation contributions include a nuanced understanding of EUV waves, an
automated tool for tracking coronal phenomena, insights into type III bursts and their sources, and ad-
vancements in SEP simulations and forecasting using deep learning. Future directions involve addressing
limitations, refining models, and incorporating more recent data for a comprehensive understanding of
solar dynamics and space weather forecasting.

5.1 Future Work

The quest to understand the Sun’s ever-changing nature continues. Future research in heliophysics holds
immense potential to expand our knowledge and improve space weather forecasting.

One crucial area lies in expanding the data pool for EUV waves. By studying EUV waves observed
throughout various solar cycle phases, we can investigate how the Sun’s cyclical activity influences their
behavior. Similarly, incorporating a broader range of active regions with diverse magnetic configurations
into the analysis of solar radio bursts will be key. This will provide a more comprehensive picture of
their characteristics across different solar activity levels.

The next leap forward hinges on leveraging multi-wavelength observations. Instruments like LOFAR,
PSP, and Solar Orbiter, each providing data at different wavelengths, will be instrumental. By combining
these views, we can gain a deeper understanding of how energetic particles and radio bursts originate
and evolve within the solar corona. Additionally, incorporating high-resolution data will allow for a more
detailed and accurate representation of the dynamic processes at play.

Furthermore, future studies should account for the impact of scattering and propagation phenomena
on both SEPs and radio burst observations. Refining models to account for these effects will significantly
enhance their accuracy for forecasting purposes.

Beyond data granularity, expanding the features used in SEP prediction models is crucial. Including
characteristics of active regions, for example, could provide a more nuanced forecasting capability. Ad-
ditionally, the implementation of advanced interpretable deep learning architectures holds promise for
enhancing model reliability and reducing forecasting errors.

The ultimate goal lies in developing real-time analysis tools for space weather forecasting. These tools
will integrate data from newly commissioned instruments and spacecraft, coupled with the incorporation
of advanced methodologies. By refining our understanding of solar dynamics and improving the accuracy
of predictive models, we can ultimately provide early warnings and more accurate risk assessments for
space weather events.
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Appendix A

A.1 Kinematics of the CBFs in the Middle/Outer Corona

Here I present the extended measurements of the 26 EUV waves in the SOHO/LASCO FOV up to almost
30 Rs. These EUV waves are presented in Table[2.1]in Chapter[2] The extended measurements are shown
below, with the same structure as in Figure After combining the radial measurements of the wave
fronts obtained from the AIA instrument with the radial measurements of the accompanied CME leading
edges obtained from the LASCO instrument, I applied two CME kinematic models; |Gallagher et al.| (2003])
and |Byrne et al.[(2013). I found that the Gallagher’s model provided a better fit. Examining the bottom
panel of the figure, I investigated the residuals for both models and it becomes evident that the residuals
are generally lower for the Gallagher’s model when compared to the Byrne’s model. The following 26
figures confirm that the Gallagher fitting model effectively incorporates both AIA and LASCO data.
This good agreement highlights the model’s ability to accurately represent the early stages of the CBF,
especially close to the Sun.

A.2 Persistent Imaging Technique

Persistent imaging is a technique used in medical imaging, particularly ultrasound imaging, to create a
continuous, real-time display of the anatomy being imaged (see |[Pysz et al.|[2011}, and references within).
The core idea of persistent imaging is to use persistence, or the ability of the human eye to retain an
image for a brief moment after it has disappeared to create a more informative and visually clear image
(Fredkin et al.||1995; Thompson & Young[2016]).

At every image in a time-ordered series, the technique keeps the old pixel value if it is brighter than the
current pixel value, else it takes the current pixel’s value. The result is saved as the current persistence
image. Then, the next image in the series is evaluated by comparing it pixel by pixel with respect to the
previous persistence image. The resulting image emphasizes the changes between the current image and
the previous persistent image, making them more visible to the human eye.

The persistent imaging technique can be described mathematically by a set of equations. If we let
I(t,z,y) be the intensity at time ¢ and pixel coordinates (x,y), and let P(t,z,y) be the persistence image
at time ¢ and pixel coordinates (z,y), then the persistence image at time ¢ is computed as:

P(t,x,y) = maz{I(t,z,y), P(t — 1,z,y)}, (A1)

where max represents the maximum of its two arguments. The current image at time ¢ is then evaluated
with respect to the previous persistence image as follows:

I'(t,z,y) = max{I(t,z,y) — P(t —1,2,%),0}, (A.2)

The resulting image I'(¢, x,y) is a modified version of the current image that emphasizes the differences
from the previous persistence image.

The persistent imaging technique has been shown to improve the visual quality of ultrasound images
and other medical imaging modalities, and is commonly used in clinical practice. In this work, I utilize the
persistent imaging technique to improve the visualization of the solar radio sources of type III emissions
(Fig. [3.6).
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Figure A.13: Same for the event on May 15, 2013.
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Figure A.15: Same for the event on June 21, 2013.
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Figure A.16: Same for the event on October 25, 2013.
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Figure A.19: Same for the event on July 8, 2014.
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Figure A.20: Same for the event on December 5, 2014.
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Figure A.21: Same for the event on May 12, 2015.
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Figure A.22: Same for the event on September 20, 2015.
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Figure A.23: Same for the event on October 29, 2015.
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Figure A.24: Same for the event on November 9, 2015.
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Figure A.25: Same for the event on April 1, 2017.
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A.3 Resolving the radio emission location ambiguity

In this part, we show that the -Z solution of Equation is highly unlikely in our case. Figure
shows the positive and negative solutions of Equation I take the innermost and outermost coronal
radio sources at Ry and Rs, respectively, as an example. r; and ry are the projections of Ry and R,
on the POS, respectively. Harmonic radio emission from R; will theoretically be absorbed by a region
along the LOS with plasma frequency (and corresponding density) equal to or higher than the harmonic
emission frequency at R;. In the case of the spherically symmetric Newkirk model, the highest density
location the emission from R; could pass through is r; on the POS. Thus, for harmonic radio emission
from behind the POS (-Z, where Z = 0 is defined at the center of the Sun and positive Z is towards the
observer) to be observed at the Earth, it must satisfy the following condition:

2fR1 > f7"17 (AS)

where fg, is the plasma frequency of radio emission that occurred behind the POS, and f,., is the plasma
frequency at the projected location of r; on the POS. The relation between the local plasma frequency
and the electron density is defined by the equation:

fIMHz) = 8.93 x 1073/n[em=3]. (A.4)

The Newkirk electron-density model (Newkirk 1961} [1967) describes the typical densities in the outer
part of the corona according to the following equation:

R
nlem ™3] = a 4.2 x 10* 104325 (A.5)

where « is the fold number (i.e., a multiplicative factor that accounts for the density variations based
on the degree of solar activity), and r is the radial distance from the Sun in solar radii. By substituting

Equations and into Equation we obtain

Eo
. 10432
AR Y (A.6)
nR, 104.32R—?

After reduction we obtain the final formula that must be satisfied under these assumptions in order for
radio emission behind the POS to pass through the corona and reach the Earth:

1 log2 Rg -t
I (logs Do) A.
Ro (2.16 ) (A7)

From Figure r1 and ro will always be smaller than Ry and Rs, respectively. The Newkirk model
requires that the density at 1 and 79 be significantly higher than the density at Ry and Rs, respectively
(Table . Additionally, from the geometric representation in Figure we find that the electron
density at 7 is higher than at R;, hence the radio emission cannot reach the Earth from that point
behind the POS (Mann, G. et al.|[2018).

From Table the assumption of Equation is not satisfied. Thus, the -Z solution is invalid in
our case. This implies that the harmonic emission from behind the POS will not reach the Earth. Thus,
the +7 assumption is the valid solution.

Table A.1: Radial distances and densities at the first (R;) and last (Ry) radio sources were obtained
from the 2.5xNewkirk model, as well as their impact parameters r; and ro, respectively.

Point Radial distance (Rs) Density (em™3) Ratio (n,/ng)

r 1.58 5.69x107
Ry 1.81 4.82x106 11.81
o 2.6 2.59x107
Ry 3.49 1.82x10° 14.23

Furthermore, I analyzed the time difference of arrival of the radio emission at interplanetary wave-
lengths in Figure Specifically, we compared the timing of peak signals at a low frequency between
two spacecraft, Wind and STEREOQO. This analysis was conducted under the assumption of two possible
scenarios:
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Figure A.26: Schematic shows the locations of the radio sources for the +Z and -Z solutions of Equa-
tion |3.4 The Sun is located in the middle as an orange circle, with a horizontal dashed black line
representing the POS. The vertical dashed green line represents the Sun-Earth LOS. The dashed blue
and red circles represent the plasma spheres of density equivalent to the observation frequencies of the
innermost and outermost radio sources at R; and Rs, respectively, under the Newkirk model assumption
of spherically-symmetric density distribution. The impact parameters r; and ro are the projection of
R; and Ry on the POS. The dot-dashed blue and red circles are the circles passing through the impact
parameters r; and 73, respectively.

e one in which the radio emission source follows a trajectory that is roughly equidistant between
Wind and STEREO - if the +Z assumption is true.

e the trajectory implies significantly longer travel times from the source to Wind compared to
STEREO - if the —Z assumption is true.

Examining the data, I selected the frequency channel 700 kHz observed by Wind and its nearest counter-
part 675 kHz for STEREO. Interestingly, the difference in the arrival times of these signals was merely
one minute, which is within the bounds of the time resolution of the instrument. This negligible difference
in arrival times supports the +Z assumption for the beam trajectory, meaning it travels approximately
at an equal distance between the two spacecraft.

A.4 Machine Learning Terminology

In this section, I introduce the main concepts related to machine learning which are presented in the
dissertation.

e Cross-validation: A technique used to evaluate the performance of a machine learning model by
dividing the data into subsets and assessing the model on different combinations of these subsets.

e Input Horizon: The number of previous time steps considered as input to a model for time series
forecasting. It represents the length of the historical sequence used for predictions.

e Batch Size: The number of samples processed together in a single iteration of the training algo-
rithm. It affects training speed and memory requirements.
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Figure A.27: Cut of the flux density at 700 kHz observed by Wind (left panel) and STEREO-A (right
panel). Note: for STEREO-A, there is no exact frequency channel at 700 kHz; therefore we selected the
nearest one (675 kHz).

e Updating the Model’s Weights: The process of adjusting the parameters of a neural network
based on training data to minimize the difference between predicted and true outputs. The model’s
weights represent the parameters that are learned during the training process.

e Loss: A function that quantifies the difference between predicted and actual outputs. It guides
the optimization process during training.

e Minimum Validation Loss: The lowest value achieved by the loss function on a validation
dataset during training. It indicates the most accurate predictions on unseen data.

e Overfitting: When a model performs well on training data but fails to generalize to unseen data
due to memorizing training examples instead of learning underlying patterns.

e Learning Rate: A hyperparameter that determines the step size at each iteration of the opti-
mization algorithm during training. It affects learning speed and convergence. A high learning
rate can cause the training process to converge quickly, but it may also result in overshooting the
optimal solution or getting stuck in a suboptimal solution. On the other hand, a very low learning
rate can make the training process slow, and may struggle to find the optimal solution.

¢ Reducing the learning rate when the validation loss stops improving: This concept
involves adjusting the learning rate dynamically during the training process. When the validation
loss reaches a plateau or stops improving, it indicates a suboptimal point. By reducing the learning
rate, the model can take smaller steps in weight space, potentially finding a better solution. This
technique, known as learning rate scheduling or learning rate decay, is commonly used to fine-tune
the model’s performance.

e Patience: A parameter used in training to determine the number of epochs to wait for an im-
provement in validation loss before stopping the training process.

e Patience Parameter of 7: In the context of early stopping, training will be stopped if the
validation loss does not improve for 7 consecutive epochs.

e Adam Optimizer: A popular optimization algorithm in deep learning that combines Adaptive
Gradient Algorithm (AdaGrad) and Root Mean Square Propagation (RMSprop) to achieve efficient
optimization.

e Optimal Architecture: The best configuration of a neural network, including the number of
layers, neurons, and other choices, for optimal performance on a specific task.

e Hyperparameters: Parameters set before training a model that control the learning algorithm’s
behavior, such as learning rate, batch size, and activation functions.

e Layer: A building block of a neural network that performs specific operations on input data.
Includes input, hidden, output, fully connected, convolutional, recurrent, activation, and dropout
layers. Here is a description for each layer:

— Input Layer: The first layer of a neural network that receives raw input data. It passes the
input to subsequent layers for further processing. The number of nodes in the input layer is
determined by the dimensionality of the input data.
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— Hidden Layers: Intermediate layers between the input and output layers. They perform
computations on the input data and capture higher-level representations or abstractions. Hid-
den layers are not directly exposed to the input or output.

— Output Layer: The final layer of a neural network that produces model predictions or
outputs based on computations from preceding layers. The number of neurons in the output
layer depends on the problem being solved, such as regression or classification.

— Fully Connected Layer (Dense Layer): Each neuron in this layer is connected to every
neuron in the previous layer. It allows information flow between all neurons, enabling complex
relationships to be learned.

— Convolutional Layer: Commonly used in Convolutional Neural Networks (CNNs) for ana-
lyzing grid-like data, such as images. It applies convolution operations using filters or kernels
to learn spatial patterns or features.

— Recurrent Layer: Used in Recurrent Neural Networks (RNNs) to process sequential data.
These layers have feedback connections that allow information to be passed from one step to
the next, capturing temporal dependencies and maintaining memory of past inputs.

— Activation Layer: Applies a non-linear function to the output of a layer, introducing non-
linearity into the neural network. Activation functions like Sigmoid, Hyperbolic Tangent
(tanh), or Rectified Linear Unit (ReLU) determine neuron outputs based on weighted inputs.

— Dropout Layer: A regularization technique commonly used in deep learning models. It
randomly sets a fraction of outputs from the previous layer to zero during training, preventing
overfitting and improving generalization.

Layers play a crucial role in the information processing and learning capabilities of neural networks.
The arrangement and combination of different layers determine the network’s architecture and
ultimately its ability to solve specific tasks.

e Stateful: A property of Recurrent Neural Networks (RNNs) where the hidden state is preserved
between consecutive inputs, allowing the network to have memory.

e Neuron: A computational unit in a neural network that receives input, applies weights, and passes
the result through an activation function to produce an output.

e Hidden Neuron: A neuron in a hidden layer of a neural network that performs intermediate
computations.

e Callback Function: A function used during model training to perform specific actions at certain
points or conditions, such as saving the best model, adjusting learning rates, or early stopping.

e LearningRateScheduler Callback Function: A function used in training to dynamically adjust
the learning rate at specific points based on a predefined schedule or function. It improves training
efficiency and convergence by allowing the model to make finer adjustments as it approaches the
optimal solution.

A.4.1 Mathematical Representation of the LSTM NN Model
The computations inside one LSTM cell can be described by the following formulas (Thianle et al.|2020)):

fi=oWyxy +Uphi—1 + by) (A.8a)
it = o(Wizy + Uihse—1 + b;) (A.8b)
C, = tanh(Wexy + Uchy—q1 + be) (A.8¢)
Co=fi0Ci_1+i,©Cy (A.8d)

oy = c(Woxy + Ushi—1 + b,) (A.8e)
ht = oy ® tanh(C}) (A.8f)

where z; is input data at time ¢. The input gate i; determines which values from the updated cell states
(candidate values) C; should be added to the cell state. It also takes into account the current input x;
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and the previous output h; 1, and is passed through a sigmoid activation function. C, represent the
candidate values that are added to the cell state at time ¢. The forget gate activation vector f; at time
step t, which determines how much of the previous cell state should be retained. The cell state C; at
time ¢ is updated based on the forget gate, input gate, and candidate values. The output gate o; at time
t determines how much of the cell state should be output. The output vector h; at time ¢ is calculated
based on the cell state and the output gate values. h;_1 is the output vector at the previous time step
t—1. Wy, W;, W., W, are the weight matrices for the input vector z;. Uy, U;,U., U, are the weight
matrices for the output vector hy_1. by, b;, b, b, are the bias vectors. The symbol © denotes a pointwise
multiplication. The sigmoid function ¢ is used as the activation function for the gate vectors, and the
hyperbolic tangent function tanh is used for the candidate values and the output vector.

A.4.2 Evaluation Metrics

To evaluate the model performance, we used the following equations:

Ly )2 if |y — §| <
Loty = {200 wilso (A9
5y — 9| — 55), otherwise
— 1 . 7.)2
MSE = = (yi — 4:) (4.9)
i=1
N
1 N
MAE = N Z lyi — il (A-9¢)
i=1
N 52
RMSE =\ = 0" (A.94)
N ~
1 Yi — Yi
MAPE = — — A.9e
S (- D) — ) (Aof)

R=
Vo i — )2V (v — §)?

where y is the true value, ¢ is the predicted value, and § is a threshold in the Huber loss function that
controls the trade-off between the mean squared error (MSE) and the mean absolute error (MAE). In
Chapter [4] it was set to 0.1, which was selected based on several experiments.

MSE is the mean squared error, which measures the difference between predicted and actual values by
calculating the average of squared differences. It provides a measure of the average squared magnitude
of the errors in your forecasts, which can be useful in penalizing larger errors more heavily than smaller
errors.

MAPE is the mean absolute percentage error, which measures the difference between predicted and
actual values by calculating the average of absolute differences. It provides a measure of the average
magnitude of the errors, allowing to evaluate the overall accuracy of your forecasts.

RMSE is the root mean squared error, which measures the difference between predicted and actual
values by taking the square root of the average of squared differences. It provides a measure of the
accuracy of the forecasts in the same units as the original data, allowing to evaluate the magnitude of
errors in the same scale as the data.

MAPE is the mean absolute percentage error, which measures the accuracy of a forecast by calculating
the average of absolute percentage errors. It provides a measure of the accuracy of the forecasts in
percentage terms, allowing to evaluate the magnitude of errors relative to the actual values. MSE, MAE,
RMSE, and MAPE are often used in regression analysis to assess the accuracy of the model’s predictions.

Finally, R is the Pearson correlation coefficient, which measures the strength and direction of the
relationship between two continuous variables, and can provide an indication of the extent to which
changes in one variable may be related to changes in the other.

A.5 Deep Learning Model Configuration

The configurations for the ML models shown in Figure [£.5] and their performance on the validation set
and the test set for the SEP integral flux >10 MeV are presented in Table The batch size was set to
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be 64 and the number of training epochs was set to be 100. The FarlyStopping callback function, with a
patience of 10, is used to help prevent overfitting during the training process by stopping training when
the monitored metric has stopped improving for a certain number of epochs. The patience parameter
controls how many epochs the training will continue without improvement before it is stopped. This is
useful because if the validation loss stops getting better, the model has probably overfitted the training
data and is not generalizing effectively to new data. By stopping the training early, we can avoid wasting
time and resources on further training that is unlikely to improve the model’s performance.

I used the ModelCheckpoint callback function to save the best weights of the model during training
so that they can be reused later. The LearningRateScheduler callback function allows to dynamically
adjust the learning rate of the model during training using a function passed to it that will be called
at the beginning of each epoch, and it should return the desired learning rate for that epoch. It can be
useful when training deep neural networks, as it allows for a higher learning rate in the early stages of
training when the model is still far from convergence, and a lower learning rate as the model approaches
convergence, which can help it to converge more accurately. The downside might be the longer training
time.

Table A.2: Configuration of the ML model. (1) refers to the error value for 1-day forecasting. Same for
(2) refers to 2-day forecasting, and (3) for 3-day forecasting. *In the 1D-CNN layer, 32 filters, a kernel
size of 5, and strides of 1 were used.

Model No. of No. of Activation  Batch Learning - Callbacks Validation S Tosting Set
Architecture  Hidden Layers Hidden Neurons  Function  Size  Rate pochs Functions MAE NSE SE MAPE MAE MSE _ RMSE MAPE
Linear - B B (] 0.001 00 EarlyStopping 0312 0.141 5 7853 0.143 0.015 0211 60.689

Demse 0262 (1) 0.118 T32.580 (1) 0.400 (1) 0.281 ( : 238.898 (1)
L 2 32 ReLU 64 0.001 100 EarlyStopping 0.275 (2)  0.138 ( 132.004 (2)  0.395 (2) 0.286 234.704 (2)
0.200 (3)  0.166 (3 120288 (3) 0.392 (3) 0.204 230.896 (3)
N ) - 0.143 (1) 0.035 ( 70.990 (1) 0.178 (1) 0052 69.624 (1)
SI’{“\‘III’\II“ 2 32 Tanh 64 0.001 100 ]\I](‘;'Lll‘;lgf{’f‘“g . 017L(2) 0.063 ( 68.694 (2) 0171 (2) 0.071 78.075 (2)
3 point 0.264 (3) 0.118 ( 72505 (3)  0.200 (3) 0.084 67.416 (3)

— . 0.203 (1) 0.060 ( 56390 (1) 0.155 (1) 0.039

Str‘{’ihg“l 3 32 Tanh 64 1581 100 LC‘“g?ﬁ;‘ffﬂfd“l“ 0.305 (2)  0.131 (2 81.028 (2) 0223 (2) 0.079

Arlystopping 0.349 (3)  0.173 (¢ 82.819 (3)  0.223 (3) 0.084

Staternl 0.095 (1) 0.021 ( 10335 (1) 0.098 (1) 0.020

LS 3 32 Tanh 64 15set 100 EarlyStopping 0.151 (2)  0.048 (2 48.937 (2) 0134 (2) 0042
0.174 (3)  0.076 ( 55.662 (3)  0.166 (3) 0071 68.025 (3)
Stateful 0.149 (1) 0.043 ( 58151 (1) 0.170 (1) 0.049 71059 (1)
BLLSTM 3 32 Tanh 64 158t 100 EarlyStopping 0190 (2)  0.074 ( 60.154 (2)  0.211 (2) 0.090 92.727 (2)
0249 (3)  0.120 ( 67.988 (3)  0.229 (3) 0.108 87.049 (3)
. 0.108 (1) 0.027 ( T0.164 (1) 0.098 (1) 0023 51732 (1)
lt’s‘%\\’f’ 3 32 (5,1)" 1;“[';: 64 158t 100 EarlyStopping 0.146 (2)  0.051 ( 47512 (2)  0.138 (2) 0.047 68.376 (2)
0177 (3)  0.078 ( 53.087 (3) 0156 (3) 0.067 69338 (3)

All the calculations and model runs were implemented under the framework of TensorFlow 2.3.0
(Singh et al.[2020) in Python 3.6.13. The models were executed on Ubuntu 20.04.1 LTS OS with 4
x GPUs (NVIDIA GeForce RTX 2080 Ti, 11019 MiB, 300 MHz). According to the Keras API guide
(Ketkar & Ketkar|2017)), the requirements to use the cuDNN implementation are the activation function
must be set to tanh and the recurrent activation must be set to sigmoid. I also set the seed number to
7 across all the model runs to maintain reproducibility.

Stateful RNNs can be difficult to work with when using callbacks in Keras because their hidden state
must be manually managed across mini-batch updates. When training a stateful RNN in Keras, the
hidden state is carried over from the previous epoch and can cause problems with certain callbacks,
such as FarlyStopping or ModelCheckpoint. To work around this issue, one can use stateless RNNs or
manually reset the hidden state at the end of each epoch, but this can be complex and prone to errors.

A.6 Description of Skill Scores

Skill scores and ratios are commonly used in evaluating the performance of classification models, partic-
ularly in binary classification tasks. They provide insights into the model’s ability to correctly predict
positive and negative instances. Here is a brief description of each skill score and ratio, along with their
formulas:

¢ True Positive (TP): The number of data points or intervals correctly identified as positive by the
model. Tt represents instances where both the model and the ground truth indicate the presence
of an event.

e True Negative (TN): The number of intervals correctly identified as negative by the model. It
represents instances where both the model and the ground truth indicate the absence of an event.

e False Positive (FP): The number of intervals incorrectly identified as positive by the model. It
occurs when the model predicts an event, but the ground truth indicates its absence.
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False Negative (FIN): The number of intervals incorrectly identified as negative by the model.
It occurs when the model fails to detect an event that the ground truth indicates its presence.

Accuracy: Represents the proportion of correct predictions out of total predictions.

TP+TN
A = A.10
Y = TP Y TN + FP+ FN (4.10)
Precision: Represents the proportion of positive predictions that are actually positive.
TP
Precision = ————— A1l
recision = o ( )

Probability of Detection (POD) or Recall: Represents the model’s ability to correctly identify
positive instances.

TP

POD = 755N

(A.12)

Probability of False Detection (POFD): Measures the model’s tendency to falsely predict
positive instances when the ground truth indicates their absence.

FP
POFD = ——— Al
© FP+TN (A-13)

False Alarm Rate (FAR): Indicates the ratio of false positive predictions to the total number

of positive instances.

FP
FAR = FP+TP (A.14)

Critical Success Index (CSI): Measures the model’s ability to correctly predict both positive

and negative instances.
TP

" TP+ FP+FN

CSI (A.15)

True Skill Statistic (TSS): Takes into account both the model’s ability to detect positive in-
stances and its ability to avoid false alarms.

TSS = POD — FAR (A.16)

Heidke Skill Score (HSS): Evaluates the model’s performance by comparing it with random
chance. It takes into account the agreement between the model’s predictions and the observed
data, considering both true positive and true negative predictions.

TP+TN -C

where
T=TP+TN+FP+FN

(TP + FP)(TP + FN) + (TN + FP)(TN + FN)
T

128



Bibliography

Abe, O., Fakomiti, M., Igboama, W., et al. 2023, Advances in Space Research, 71, 2240
Akansu, A. N. 1991, Optical Engineering, 30, 912
Akasofu, S. 1. 1981, Space Science Reviews, 28, 121

Alharbi, F. R. & Csala, D. 2021, in 2021 International Conference on Electrical, Communication, and
Computer Engineering (ICECCE), IEEE, 1-6

Alielden, K. & Taroyan, Y. 2022, The Astrophysical Journal, 935, 66
Altschuler, M. D. & Newkirk, G. 1969, Solar Physics, 9, 131
Amari, T., Canou, A., & Aly, J.-J. 2014, Nature, 514, 465

Aminalragia-Giamini, S., Raptis, S., Anastasiadis, A., et al. 2021, Journal of Space Weather and Space
Climate, 11, 59

Aran, A., Sanahuja, B., & Lario, D. 2006, Advances in Space Research, 37, 1240
Aschwanden, M. J. 2002, Space Science Reviews, 101, 1

Aschwanden, M. J. 2010, Solar Physics, 262, 235

Badman, S. T., Carley, E., Canizares, L. A., et al. 2022, The Astrophysical Journal, 938, 95
Bale, S., Goetz, K., Harvey, P., et al. 2016, Space science reviews, 204, 49

Bastian, T., Pick, M., Kerdraon, A., Maia, D., & Vourlidas, A. 2001, The Astrophysical Journal, 558,
L65

Battarbee, M., Vainio, R., Laitinen, T., & Hietala, H. 2013, Astronomy & Astrophysics, 558, A110
Bein, B. M., Berkebile-Stoiser, S., Veronig, A. M., et al. 2011, apj, 738, 191

Benson, B., Pan, W. D., Prasad, A., Gary, G. A., & Hu, Q. 2020, Solar Physics, 295, 65

Benz, A. & Thejappa, G. 1988

Benz, A. O. 2017, Living reviews in solar physics, 14, 1

Berghmans, D., Auchere, F., Long, D. M., et al. 2021, Astronomy & Astrophysics, 656, L4
Besliu-Tonescu, D., Maris Muntean, G., & Dobrica, V. 2022, Solar Physics, 297, 65

Biesecker, D., Myers, D., Thompson, B., Hammer, D., & Vourlidas, A. 2002, The Astrophysical Journal,
569, 1009

Bonnin, X., Hoang, S., & Maksimovic, M. 2008, Astron. Astrophys., 489, 419
Borovsky, J. E. & Denton, M. H. 2006, Journal of Geophysical Research: Space Physics, 111

Boudjada, M. Y., Abou el Fadl, A., Galopeau, P. H., Al-Haddad, E., & Lammer, H. 2020, Advances in
Radio Science, 18, 83

129



Brewer, D. A., Barth, J. L., Label, K. A., Kauffman, W. J., & Giffin, G. 2002, Acta Astronautica, 51,
609

Bruno, A. & Richardson, I. G. 2021, Solar Physics, 296, 36
Byrne, J., Long, D., Gallagher, P., et al. 2013, Astronomy & Astrophysics, 557, A96
Camporeale, E. 2019, Space weather, 17, 1166

Cane, H. V., Erickson, W., & Prestage, N. 2002, Journal of Geophysical Research: Space Physics, 107,
SSH

Cattell, C., Glesener, L., Leiran, B., et al. 2021, Astron. Astrophys., 650, A6

Che, H. 2018, Journal of Physics: Conference Series, 1100, 012005

Chen, N., Ip, W.-H., & Innes, D. 2013, Astrophys. J., 769, 96

Chen, P. 2016, Low-Frequency Waves in Space Plasmas, 379

Chen, P. F., Wu, S. T., Shibata, K., & Fang, C. 2002, The Astrophysical Journal, 572, 1.99
Chen, X., Kontar, E. P., Chrysaphi, N., et al. 2023, arXiv e-prints, arXiv:2306.09160
Cheung, M. C., Boerner, P., Schrijver, C., et al. 2015, The Astrophysical Journal, 807, 143
Chhabra, S., Klimchuk, J. A.; & Gary, D. E. 2021, The Astrophysical Journal, 922, 128
Cohen, C. & Mewaldt, R. 2018, Space Weather, 16, 1616

Curto, J. J., Blanca, M., & Martinez, E. 2008, Solar Physics, 250, 411

Dabrowski, B., Flisek, P., Mikuta, K., et al. 2021, Remote Sensing, 13, 148

Dalla, S., Swalwell, B., Battarbee, M., et al. 2017in (Cambridge University Press), 268271

Debrunner, H., Fliickiger, E., Gradel, H., Lockwood, J., & McGuire, R. 1988, Journal of Geophysical
Research: Space Physics, 93, 7206

Del Zanna, G., Aulanier, G., Klein, K.-L., & Térok, T. 2011, Astronomy & Astrophysics, 526, A137
Delannée, C. & Aulanier, G. 1999, Solar Physics, 190, 107

Desai, M. & Giacalone, J. 2016, Living Reviews in Solar Physics, 13, 3

Dierckxsens, M., Tziotziou, K., Dalla, S., et al. 2015, Solar Physics, 290, 841

Domingo, V., Fleck, B., & Poland, A. 1. 1995, Solar Physics, 162, 1

Dulk, G., Steinberg, J.-L., Lecacheux, A., Hoang, S., & MacDowall, R. J. 1985, Astronomy and Astro-
physics, 150, L28

Dumbovié, M., Veronig, A., Podladchikova, T., et al. 2021, Astronomy & Astrophysics, 652, A159
Dungey, J. 1961, Journal of Geophysical Research, 66, 1043

Eastwood, J., Nakamura, R., Turc, L., Mejnertsen, L., & Hesse, M. 2017, Space Science Reviews, 212,
1221

Echer, E. & Gonzalez, W. 2022, Advances in Space Research, 70, 2830

Echer, E., Tsurutani, B., & Gonzalez, W. 2013, Journal of Geophysical Research: Space Physics, 118,
385

Efron, B. 1979, The Annals of Statistics, 7, 1
Engell, A., Falconer, D., Schuh, M., Loomis, J., & Bissett, D. 2017, Space Weather, 15, 1321

Ergun, R., Larson, D., Lin, R., et al. 1998, The Astrophysical Journal, 503, 435

130



Feynman, J., Armstrong, T., Dao-Gibner, L., & Silverman, S. 1990, Solar Physics, 126, 385
Fletcher, L., Dennis, B. R., Hudson, H. S., et al. 2011, Space science reviews, 159, 19
Florios, K., Kontogiannis, I., Park, S.-H., et al. 2018, Solar Physics, 293, 28

Fox, N., Velli, M., Bale, S., et al. 2016, Space Science Reviews, 204, 7

Fredkin, D. R., Rice, J. A., Colquhoun, D., & Gibb, A. 1995, Philosophical Transactions of the Royal
Society of London. Series B: Biological Sciences, 350, 353

Gabriel, S., Evans, R., & Feynman, J. 1990, Solar physics, 128, 415
Gallagher, P. T., Lawrence, G. R., & Dennis, B. R. 2003, The Astrophysical Journal Letters, 588, L53
Gieseler, J., Dresing, N., Palmroos, C., et al. 2023, Frontiers in Astronomy and Space Sciences, 9, 384

Gongzalez, W., Joselyn, J.-A., Kamide, Y., et al. 1994, Journal of Geophysical Research: Space Physics,
99, 5771

Gongzalez, W. D., Echer, E., Clua-Gonzalez, A., & Tsurutani, B. T. 2007, Geophysical research letters,
34

Goodfellow, I., Bengio, Y., & Courville, A. 2016, Deep learning (MIT press)
Gopalswamy, N. 2022, Atmosphere, 13, 1781

Gopalswamy, N., Akiyama, S., Yashiro, S., Michalek, G., & Lepping, R. 2008, Journal of Atmospheric
and Solar-Terrestrial Physics, 70, 245

Gopalswamy, N., Mékeld, P., & Yashiro, S. 2019, Sun and Geosphere, 14, 111
Gopalswamy, N., Mékela, P., Yashiro, S., et al. 2017in , IOP Publishing, 012009

Gopalswamy, N., Mékeld, P., Yashiro, S., Akiyama, S., & Xie, H. 2022a, in 2022 3rd URSI Atlantic and
Asia Pacific Radio Science Meeting (AT-AP-RASC), 1-4

Gopalswamy, N. & Yashiro, S. 2011, apjl, 736, L17

Gopalswamy, N.; Yashiro, S., Akiyama, S., et al. 2022b, Journal of Geophysical Research: Space Physics,
127, €2022JA030404

Graves, A. & Jaitly, N. 2014in (Bejing, China: PMLR), 1764-1772
Graves, A. & Schmidhuber, J. 2005, Neural networks, 18, 602

Greff, K., Srivastava, R. K., Koutnik, J., Steunebrink, B. R., & Schmidhuber, J. 2016, IEEE transactions
on neural networks and learning systems, 28, 2222

Guo, F. & Giacalone, J. 2013, The Astrophysical Journal, 773, 158

Gurnett, D. A. & Anderson, R. R. 1976, Science, 194, 1159

Gurnett, D. A. & Anderson, R. R. 1977, Journal of Geophysical Research, 82, 632

Hale, G. E., Ellerman, F., Nicholson, S. B., & Joy, A. H. 1919, Astrophys. J., 49, 153
Harra, L., Brooks, D. H., Bale, S. D., et al. 2021, Astronomy & Astrophysics, 650, A7
Harvey, J. W., Hill, F., Hubbard, R. P., et al. 1996, Science, 272, 1284

Hochreiter, S. & Schmidhuber, J. 1997, Neural computation, 9, 1735

Holman, G. D., Aschwanden, M. J., Aurass, H., et al. 2011, Space science reviews, 159, 107

Holschneider, M., Kronland-Martinet, R., Morlet, J., & Tchamitchian, P. 1989, in Wavelets. Time-
Frequency Methods and Phase Space, ed. J.-M. Combes, A. Grossmann, & P. Tchamitchian (Springer-
Verlag), 286

131



Hu, J., Li, G., Ao, X., Zank, G. P., & Verkhoglyadova, O. 2017, Journal of Geophysical Research: Space
Physics, 122, 10

Huang, X., Tan, H., Lin, G., & Tian, Y. 2018, 2018 International Conference on Artificial Intelligence
and Big Data (ICAIBD), 185

Thianle, I. K., Nwajana, A. O., Ebenuwa, S. H., et al. 2020, IEEE Access, 8, 179028

Ireland, J., Inglis, A. R., Shih, A. Y., et al. 2019, Solar Physics, 294, 158

Ishikawa, S.-n., Glesener, L., Krucker, S., et al. 2017, Nature Astronomy, 1, 771

Jackson, B., Hick, P., Buffington, A., et al. 2010in , American Institute of Physics, 659-662

Jang, S., Moon, Y.-J., Kim, R.-S., Lee, H., & Cho, K.-S. 2016, The Astrophysical Journal, 821, 95

Kahler, S., Cliver, E., Cane, H., et al. 1987, in Proceedings of the 20*" International Cosmic Ray
Conference Moscow, Volume 3, p. 121

Kahler, S., Kazachenko, M., Lynch, B., & Welsch, B. 2017in , IOP Publishing, 012011

Kabhler, S., Sheeley Jr, N., Howard, R., et al. 1984, Journal of Geophysical Research: Space Physics, 89,
9683

Kahler, S. W., Cliver, E. W., & Ling, A. G. 2007, Journal of Atmospheric and Solar-Terrestrial Physics,
69, 43

Kane, R. 2011, Indian Journal of Radio & Space Physics, 40, 7

Kasapis, S., Zhao, L., Chen, Y., et al. 2022, Space Weather, 20, e2021SW002842

Kay, C. & Gopalswamy, N. 2018, Journal of Geophysical Research: Space Physics, 123, 7220

Ketkar, N. & Ketkar, N. 2017, Deep learning with python: a hands-on introduction, 97

Kim, T., Park, E., Lee, H., et al. 2019, Nature Astronomy, 3, 397

Kingma, D. P. & Ba, J. 2015, International Conference on Learning Representations (ICLR), San Diego
Klassen, A., Karlicky, M., & Mann, G. 2003a, Astronomy & Astrophysics, 410, 307

Klassen, A., Pohjolainen, S., & Klein, K.-L.. 2003b, Solar Physics, 218, 197

Klein, K.-L. & Dalla, S. 2017, Space Science Reviews, 212, 1107

Kolen, J. F. & Kremer, S. C. 2001, Gradient Flow in Recurrent Nets: The Difficulty of Learning
LongTerm Dependencies (IEEE), 237-243

Kong, D., Pan, G., Yan, X., Wang, J., & Li, Q. 2018, The Astrophysical Journal Letters, 863, .22
Kong, X., Guo, F., Giacalone, J., Li, H., & Chen, Y. 2017, The Astrophysical Journal, 851, 38
Kontar, E. P., Chen, X., Chrysaphi, N., et al. 2019, The Astrophysical Journal, 884, 122

Kontar, E. P., Emslie, A. G., Clarkson, D. L., et al. 2023, arXiv preprint arXiv:2308.05839
Kontar, E. P., Yu, S., Kuznetsov, A., et al. 2017, Nature communications, 8, 1515

Kéta, J., Manchester, W., Jokipii, J., De Zeeuw, D., & Gombosi, T. 2005in , American Institute of
Physics, 201-206

Kouloumvakos, A., Rodriguez-Garcia, L., Gieseler, J., et al. 2022, Frontiers in Astronomy and Space
Sciences, 9, 974137

Kozarev, K., Nedal, M., Miteva, R., Dechev, M., & Zucca, P. 2022, Frontiers in Astronomy and Space
Sciences, 9, 34

Kozarev, K., Schwadron, N., Dayeh, M., et al. 2010, Space Weather, 8

132



Kozarev, K. A., Davey, A., Kendrick, A., Hammer, M., & Keith, C. 2017, Journal of Space Weather and
Space Climate, 7, A32

Kozarev, K. A., Dayeh, M. A., & Farahat, A. 2019, The Astrophysical Journal, 871, 65
Kozarev, K. A., Evans, R. M., Schwadron, N. A., et al. 2013, The Astrophysical Journal, 778, 43

Kozarev, K. A., Korreck, K. E., Lobzin, V. V., Weber, M. A., & Schwadron, N. A. 2011, The Astrophys-
ical Journal, 733, .25

Kozarev, K. A., Raymond, J. C., Lobzin, V. V., & Hammer, M. 2015, The Astrophysical Journal, 799,
167

Kozarev, K. A. & Schwadron, N. A. 2016, apj, 831, 120

Krucker, S., Hudson, H. S., Jeffrey, N. L. S., et al. 2011, The Astrophysical Journal, 739, 96
Krupar, V., Szabo, A., Maksimovic, M., et al. 2020, Astrophys. J. Suppl., 246, 57

Kwon, R.-Y., Zhang, J., & Olmedo, O. 2014, The Astrophysical Journal, 794, 148

Laitinen, T. & Dalla, S. 2017, The Astrophysical Journal, 834, 127

Lakhina, G. S. & Tsurutani, B. T. 2016, Geoscience Letters, 3, 1

Lanzerotti, L. J. 2001, Washington DC American Geophysical Union Geophysical Monograph Series,
125, 11

Laurenza, M., Cliver, E., Hewitt, J., et al. 2009, Space Weather, 7

Lavasa, E., Giannopoulos, G., Papaioannou, A., et al. 2021, Solar Physics, 296, 107

Le, G.-M. & Zhang, X.-F. 2017, Research in Astronomy and Astrophysics, 17, 123
Lecacheux, A., Steinberg, J. L., Hoang, S., & Dulk, G. A. 1989, Astron. Astrophys., 217, 237

Lemen, J. R., Akin, D. J., Boerner, P. F., et al. 2011, in The solar dynamics observatory (Springer),
17-40

Lemen, J. R., Title, A. M., Akin, D. J., et al. 2012, Solar Physics, 275, 17

Li, B. & Cairns, 1. H. 2012, The Astrophysical Journal, 753, 124

Li, G., Shalchi, A., Ao, X., Zank, G., & Verkhoglyadova, O. 2012, Advances in Space Research, 49, 1067
Li, G., Zank, G., & Rice, W. 2003, Journal of Geophysical Research: Space Physics, 108

Li, R. & Zhu, J. 2013, Research in Astronomy and Astrophysics, 13, 1118

Lilensten, J., Coates, A. J., Dehant, V., et al. 2014, The Astronomy and Astrophysics Review, 22, 1
Lin, R. 2005, Advances in Space Research, 35, 1857

Lin, R. 2011, Space science reviews, 159, 421

Liu, W. & Ofman, L. 2014, Solar Physics, 289, 3233

Long, D. M., Bloomfield, D. S., Chen, P.-F., et al. 2017, Solar physics, 292, 1

Long, D. M., Bloomfield, D. S., Gallagher, P. T., & Pérez-Sudrez, D. 2014, Solar Physics, 289, 3279
Long, D. M., DeLuca, E. E., & Gallagher, P. T. 2011, apjl, 741, L21

Ma, S., Raymond, J. C., Golub, L., et al. 2011, The Astrophysical Journal, 738, 160

MacDowall, R., Lara, A., Manoharan, P., et al. 2003, Geophysical research letters, 30

Madjarska, M. S. 2019, Living Reviews in Solar Physics, 16, 2

Magdalenié¢, J., Marqué, C., Zhukov, A. N., Vrsnak, B., & Zic, T. 2010a, Astrophys. J., 718, 266

133



Magdalenié, J., Marqué, C., Zhukov, A. N., Vrsnak, B., & Zic, T. 2010b, Astrophys. J., 718, 266

Malandraki, O. E. & Crosby, N. B. 2018, Solar particle radiation storms forecasting and analysis: the
HESPERIA HORIZON 2020 project and beyond

Mann, G., Klassen, A., Aurass, H., & Classen, H.-T. 2003, Astronomy & Astrophysics, 400, 329
Mann, G., Breitling, F., Vocks, C., et al. 2018, A&A, 611, A57

Manu, V., Balan, N., Zhang, Q.-H., & Xing, Z.-Y. 2022, Journal of Geophysical Research: Space Physics,
127, €2022JA030747

Markwardt, C. B. 2009, in Astronomical Society of the Pacific Conference Series, Vol. 411, Astronomical
Data Analysis Software and Systems XVIII, ed. D. A. Bohlender, D. Durand, & P. Dowler, 251

Melrose, D. 1980, Space Science Reviews, 26, 3

Melrose, D. 2017, Reviews of Modern Plasma Physics, 1, 1

Mierla, M., Inhester, B., Antunes, A., et al. 2010in , Copernicus GmbH, 203-215

Mikié, Z., Linker, J. A., Schnack, D. D., Lionello, R., & Tarditi, A. 1999, Physics of Plasmas, 6, 2217
Miteva, R., Klein, K.-L., Malandraki, O., & Dorrian, G. 2013, Solar Physics, 282, 579

Miteva, R., Nedal, M., Samwel, S. W., & Temmer, M. 2023, Universe, 9, 179

Miteva, R., Samwel, S., Costa-Duarte, M., & Danov, D. 2016, in Proceedings of the Eighth Workshop”
Solar Influences on the Magnetosphere, Ionosphere and Atmosphere, Vol. 30, 27-30

Miteva, R., Samwel, S., Costa-Duarte, M., & Malandraki, O. 2017, Sun Geosph, 12
Moore, R. L., Sterling, A. C., Hudson, H. S., & Lemen, J. R. 2001, The Astrophysical Journal, 552, 833

Morosan, D. E. & Gallagher, P. T. 2017, in Planetary Radio Emissions VIII, ed. G. Fischer, G. Mann,
M. Panchenko, & P. Zarka, 357-368

Morton, R., Tomczyk, S., & Pinto, R. 2015, Nature Communications, 6, 7813
Muhr, N., Veronig, A. M., Kienreich, I. W., et al. 2014, Solar Physics, 289, 4563

Nammous, M. K., Saeed, K., & Kobojek, P. 2022, Journal of King Saud University - Computer and
Information Sciences, 34, 764

Nedal, M., Kozarev, K., Arsenov, N., & Zhang, P. 2023, J. Space Weather Space Clim., 13, 26

Nedal, M., Mahrous, A., & Youssef, M. 2019, Astrophysics and Space Science, 364, 161

Newkirk, G. 1967, Annual Review of Astronomy and Astrophysics, 5, 213

Newkirk, Gordon, J. 1961, Astrophys. J., 133, 983

Ng, C. K., Reames, D. V., & Tylka, A. J. 2012in , American Institute of Physics, 212-218
Nieves-Chinchilla, T., Vourlidas, A., Raymond, J. C., et al. 2018, Solar Physics, 293, 1

Nindos, A., Alissandrakis, C. E., Hillaris, A., & Preka-Papadema, P. 2011, Astron. Astrophys., 531, A31
Nindos, A., Aurass, H., Klein, K. L., & Trottet, G. 2008, Sol. Phys., 253, 3

Nitta, N. V., Mason, G. M., Wang, L., Cohen, C. M. S., & Wiedenbeck, M. E. 2015, The Astrophysical
Journal, 806, 235

Nitta, N. V., Schrijver, C. J., Liu, W., et al. 2013, The Astrophysical Journal, 776, 58
Nymmik, R. 2007, Advances in Space Research, 40, 321
Nunez, M. 2011, Space Weather, 9

134



Odstrcil, D., Riley, P., & Zhao, X. 2004, Journal of Geophysical Research: Space Physics, 109
Offringa, A. R., McKinley, B., Hurley-Walker, N., et al. 2014, Mon. Not. R. Astron. Soc., 444, 606
Ofman, L. & Thompson, B. 2002, The Astrophysical Journal, 574, 440

Olah, C. 2015, Neural Networks, Types, and Functional Programming, [Blog post]

Olmedo, O., Vourlidas, A., Zhang, J., & Cheng, X. 2012, The Astrophysical Journal, 756, 143
Ontiveros, V. & Vourlidas, A. 2009, The Astrophysical Journal, 693, 267

Ontiveros, V. & Vourlidas, A. 2009, apj, 693, 267

Oughton, E. J., Skelton, A., Horne, R. B., Thomson, A. W., & Gaunt, C. T. 2017, Space Weather, 15,
65

Pala, Z. & Atici, R. 2019, Solar Physics, 294, 50

Paouris, E., Vourlidas, A., Papaioannou, A., & Anastasiadis, A. 2021, Space Weather, 19,
€2020SW002617

Papaioannou, A., Anastasiadis, A., Kouloumvakos, A., et al. 2018, Solar Physics, 293, 1

Papaioannou, A.; Vainio, R., Raukunen, O., et al. 2022, Journal of Space Weather and Space Climate,
12, 24

Park, J., Innes, D. E., Bucik, R., & Moon, Y.-J. 2013, The Astrophysical Journal, 779, 184
Parker, E. N. 1960, Astrophysical Journal, 132, 821

Patsourakos, S. & Vourlidas, A. 2009, The Astrophysical Journal, 700, L182

Patsourakos, S. & Vourlidas, A. 2012, Solar Physics, 281, 187

Patsourakos, S., Vourlidas, A., & Stenborg, G. 2010, Astrophys. J. Lett., 724, .188

Pérez-Sudrez, D., Higgins, P. A., Bloomfield, D. S., et al. 2011, Automated Solar Feature Detection for
Space Weather Applications, 207-225

Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012, solphys, 275, 3
Piantschitsch, I., Vrénak, B., Hanslmeier, A., et al. 2018, The Astrophysical Journal, 860, 24

Pick, M. 2006, in Solar and Heliospheric Origins of Space Weather Phenomena, ed. J.-P. Rozelot, Vol.
699, 119

Pick, M., Forbes, T. G., Mann, G., et al. 2006, Multi-Wavelength Observations of CMEs and Associated
Phenomena, Vol. 21, 341

Podladchikova, O. & Berghmans, D. 2005, Solar Physics, 228, 265

Pomoell, J. & Poedts, S. 2018, Journal of Space Weather and Space Climate, 8, A35

Priest, E. & Forbes, T. 2007, Magnetic Reconnection

Pulkkinen, T. 2007, Living Reviews in Solar Physics, 4, 1

Pulupa, M., Bale, S., Bonnell, J., et al. 2017, Journal of Geophysical Research: Space Physics, 122, 2836
Pulupa, M., Bale, S. D., Badman, S. T., et al. 2020, Astrophys. J. Suppl., 246, 49

Pysz, M. A., Foygel, K., Panje, C. M., et al. 2011, Investigative radiology, 46, 187

Qiu, S., Zhang, Z., Yousof, H., et al. 2022, Advances in Space Research, 70, 2047

Ramstad, R., Holmstrom, M., Futaana, Y., et al. 2018, Geophysical Research Letters, 45, 7306
Reames, D. V. 1999, Space Science Reviews, 90, 413

135



Reames, D. V. 2000in , American Institute of Physics, 289-300

Reames, D. V. 2013, Space Science Reviews, 175, 53

Reames, D. V. 2021

Reid, H. A. 2020, Frontiers in Astronomy and Space Sciences, 7, 56

Reid, H. A. & Kontar, E. P. 2018a, Astronomy & Astrophysics, 614, A69

Reid, H. A. & Kontar, E. P. 2018b, The Astrophysical Journal, 867, 158

Reid, H. A. & Vilmer, N. 2017, Astronomy & Astrophysics, 597, A77

Reid, H. A. S. & Ratcliffe, H. 2014, Research in Astronomy and Astrophysics, 14, 773
Reiner, M. J., Goetz, K., Fainberg, J., et al. 2009, Solar Physics, 259, 255

Richardson, I., von Rosenvinge, T., & Cane, H. 2016, Solar Physics, 291, 2117

Ripley, B. D. 1996, Pattern Recognition and Neural Networks (Cambridge University Press)
Rodriguez, J., Onsager, T., & Mazur, J. 2010, Geophysical Research Letters, 37

Rouillard, A. P., Plotnikov, 1., Pinto, R. F., et al. 2016, The Astrophysical Journal, 833, 45
Rouillard, A. P., Sheeley, N. R., Tylka, A., et al. 2012, The Astrophysical Journal, 752, 44
Saint-Hilaire, P., Vilmer, N., & Kerdraon, A. 2012, The Astrophysical Journal, 762, 60
Saiz, E., Cerrato, Y., Cid, C., et al. 2013, Journal of Space Weather and Space Climate, 3, A26
Samwel, S. & Miteva, R. 2023, Advances in Space Research, 72, 3440

Savitzky, A. & Golay, M. J. 1964, Analytical chemistry, 36, 1627

Schatten, K. H., Wilcox, J. M., & Ness, N. F. 1969, Solar Physics, 6, 442

Schrijver, C. J. 2015, Space Weather, 13, 524

Schrijver, C. J., Kauristie, K., Aylward, A. D., et al. 2015, Advances in Space Research, 55, 2745

Schrijver, C. J. & Siscoe, G. L. 2010a, Heliophysics: Evolving solar activity and the climates of space
and Earth (Cambridge University Press)

Schrijver, C. J. & Siscoe, G. L. 2010b, Heliophysics: Evolving solar activity and the climates of space
and Earth (Cambridge University Press)

Schuster, M. & Paliwal, K. K. 1997, IEEE transactions on Signal Processing, 45, 2673
Schwadron, N. A., Gorby, M., Tordk, T., et al. 2014, Space Weather, 12, 323
Schwadron, N. A., Lee, M., Gorby, M., et al. 2015, The Astrophysical Journal, 810, 97
Schwadron, N. A., Townsend, L., Kozarev, K., et al. 2010, Space Weather, 8

Schwenn, R. 2006, Living reviews in solar physics, 3, 1

Selvakumaran, R., Veenadhari, B., Akiyama, S., et al. 2016, Journal of Geophysical Research: Space
Physics, 121, 8188

Sheeley Jr, N., Walters, J., Wang, Y.-M., & Howard, R. 1999, Journal of Geophysical Research: Space
Physics, 104, 24739

Shibata, K. & Magara, T. 2011, Living Reviews in Solar Physics, 8, 1

Singh, P., Manure, A., Singh, P., & Manure, A. 2020, Learn TensorFlow 2.0: Implement Machine
Learning and Deep Learning Models with Python, 1

Sokolov, I., Roussev, 1., Gombosi, T., et al. 2004, The Astrophysical Journal, 616, L171

136



Sokolov, I. V., Roussev, L. I., Skender, M., Gombosi, T. I., & Usmanov, A. V. 2009, The Astrophysical
Journal, 696, 261

Stansby, D., Yeates, A., & Badman, S. T. 2020, Journal of Open Source Software, 5, 2732
Starck, J.-L. & Murtagh, F. 2002, Astronomical image and data analysis (Springer Netherlands)
Stepanyuk, O., Kozarev, K., & Nedal, M. 2022, Journal of Space Weather and Space Climate, 12, 20

Sundermeyer, M., Alkhouli, T., Wuebker, J., & Ney, H. 2014, in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP) (Association for Computational Linguis-
tics), 14-25

Suzuki, S. & Dulk, G. 1985, Cambridge: Cambridge University Press, 289

Svestka, Z. 1995, Advances in Space Research, 16, 27

Szenicer, A., Fouhey, D. F., Munoz-Jaramillo, A., et al. 2019, Science Advances, 5, eaaw6548
Temmer, M. 2016, Astronomische Nachrichten, 337, 1010

Temmer, M. 2021, Living Reviews in Solar Physics, 18, 4

Thernisien, A. 2011, The Astrophysical Journal Supplement Series, 194, 33

Thernisien, A., Vourlidas, A., & Howard, R. 2009, Solar Physics, 256, 111

Thompson, B. & Young, C. 2016, The Astrophysical Journal, 825, 27

Thompson, B. c., Gurman, J., Neupert, W., et al. 1999, The Astrophysical Journal, 517, L151
Thompson, B. J. & Myers, D. C. 2009, Astrophys. J. Suppl., 183, 225

Thompson, B. J., Plunkett, S. P., Gurman, J. B., et al. 1998, grl, 25, 2465

Thompson, W. T. 2006, A&A, 449, 791

Torsti, J., Valtonen, E., Lumme, M., et al. 1995, Sol. Phys., 162, 505

Trottet, G., Samwel, S., Klein, K.-L., Dudok de Wit, T., & Miteva, R. 2015, Solar Physics, 290, 819

Truscott, P., Lei, F., Dyer, C., et al. 2000, in 2000 IEEE Radiation Effects Data Workshop. Workshop
Record. Held in conjunction with IEEE Nuclear and Space Radiation Effects Conference (Cat. No.
00TH8527), IEEE, 147-152

Tsurutani, B. T. 1985

Tsurutani, B. T., Gonzalez, W. D.,; & Kamide, Y. 1997, Surveys in geophysics, 18, 363
Vainio, R., Desorgher, L., Heynderickx, D., et al. 2009, Space science reviews, 147, 187
Vainio, R. & Laitinen, T. 2008, Journal of Atmospheric and Solar-Terrestrial Physics, 70, 467
van Diepen, G., Dijkema, T. J., & Offringa, A. 2018, Astrophysics Source Code Library, ascl
van Haarlem, M. P., Wise, M. W., Gunst, A., et al. 2013, Astronomy & astrophysics, 556, A2

Verbeeck, C., Delouille, V., Mampaey, B., & De Visscher, R. 2014, Astronomy and Astrophysics, 561,
A29

Verbeke, C., Mays, M. L., Kay, C., et al. 2022, Advances in Space Research
Verkhoglyadova, O., Li, G., Zank, G., Hu, Q., & Mewaldt, R. 2009, The Astrophysical Journal, 693, 894

Veronig, A., Muhr, N., Kienreich, I., Temmer, M., & Vrgnak, B. 2010, The Astrophysical Journal Letters,
716, L57

Vourlidas, A., Lynch, B. J., Howard, R. A., & Li, Y. 2013, Solar Physics, 284, 179

137



Vourlidas, A., Syntelis, P., & Tsinganos, K. 2012, Solar Physics, 280, 509

Vourlidas, A., Wu, S. T., Wang, A. H., Subramanian, P., & Howard, R. A. 2003, apj, 598, 1392
Vrsnak, B. & Cliver, E. W. 2008, Solar Physics, 253, 215

Vrsnak, B., Zic, T., Vrbanec, D., et al. 2013, Solar physics, 285, 295

Warmuth, A. 2015, Living Reviews in Solar Physics, 12, 1

Webb, D. F. & Howard, T. A. 2012, Living Reviews in Solar Physics, 9, 1

Whitman, K., Egeland, R., Richardson, I. G., et al. 2023, Advances in Space Research, 72, 5161, cOSPAR
Space Weather Roadmap 2022: Scientific Research and Applications

Wild, J. 1950a, Australian Journal of Chemistry, 3, 399

Wild, J. 1950b, Australian Journal of Chemistry, 3, 541

Wild, J. & McCready, L. 1950, Australian Journal of Chemistry, 3, 387

Wild, J., Smerd, S., & Weiss, A. 1963, Annual Review of Astronomy and Astrophysics, 1, 291
Wills-Davey, M., DeForest, C., & Stenflo, J. O. 2007, The Astrophysical Journal, 664, 556

Wilson, J. W., Townsend, L. W., Chun, S. Y., et al. 1988, BRYNTRN: A baryon transport computer
code, computation procedures and data base, Tech. rep.

Wollmer, M., Zhang, Z., Weninger, F., Schuller, B., & Rigoll, G. 2013, in 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, IEEE, 6822-6826

Wood, B., Howard, R., & Socker, D. 2010, The Astrophysical Journal, 715, 1524
Wu, C.-C. & Lepping, R. P. 2016, Solar Physics, 291, 265

Wu, C. S., Wang, C. B., Yoon, P. H., Zheng, H. N., & Wang, S. 2002, The Astrophysical Journal, 575,
1094

Whuelser, J.-P.; Lemen, J. R., Tarbell, T. D., et al. 2004, in Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series, Vol. 5171, Telescopes and Instrumentation for Solar Astrophysics,
ed. S. Fineschi & M. A. Gummin, 111-122

Xapsos, M. A.; Stauffer, C. A., Jordan, T. M., Adams, J. H., & Dietrich, W. F. 2012, IEEE Transactions
on Nuclear Science, 59, 1054

Xie, H., Ofman, L., & Lawrence, G. 2004, Journal of Geophysical Research: Space Physics, 109
Young, P. R., Tian, H., Peter, H., et al. 2018, Space Science Reviews, 214, 1

Zank, G., Matthaeus, W., Bieber, J., & Moraal, H. 1998, Journal of Geophysical Research: Space Physics,
103, 2085

Zhang, J., Cheng, X., & Ding, M.-d. 2012, Nature communications, 3, 747

Zhang, J. & Dere, K. P. 2006, apj, 649, 1100

Zhang, J., Richardson, I., Webb, D., et al. 2007, Journal of Geophysical Research: Space Physics, 112
Zhang, P., Wang, C., Ye, L., & Wang, Y. 2019, Solar Physics, 294, 62

Zhang, P., Wang, C. B., & Ye, L. 2018, Astronomy & Astrophysics, 618, A165

Zhang, P., Zucca, P., Kozarev, K., et al. 2022a, The Astrophysical Journal, 932, 17

Zhang, W., Zhao, X., Feng, X., et al. 2022b, Universe, 8, 30

Zhu, H., Zhu, W., & He, M. 2022, Solar Physics, 297, 157

138



	Introduction
	Background and Motivation
	Coronal Waves
	Solar Radio Bursts
	Solar Energetic Protons Forecasting

	Objectives and Scope
	Outlines

	Remote Observations: Early-stages and Later-stages of Eruption
	Introduction
	EUV Observations
	Data Analysis and Methods
	CBF Kinematics and Geometric Modeling: Case Study May 11, 2011
	Event Context
	Low Corona Part
	Middle/Outer Corona Part

	Statistical Study
	Wavetrack: Automated Recognition and Tracking of Solar Eruptions
	Overview
	Image Filtering Techniques
	Wavetrack for Coronal Wave and Filament Tracking
	Fourier Local Correlation Tracking (FLCT) Model
	Results

	Geomagnetic Storms: CME Speed De-Projection vs. In Situ Analysis
	Overview
	GSs and IP Phenomena
	GSs and Solar Phenomena
	PyThea 3D De-Projection Tool
	Results

	Discussion
	CME Kinematics and Coronal Shock Wave Characteristics
	Unveiling Dynamic Coronal Features with Wavetrack
	Projection Effects: The Challenge of Subjectivity in CME Speed Determination

	Conclusions

	Solar Radio Observations: Integrating Data for Coronal Diagnostics
	Introduction
	Observations
	PSP Observations
	LOFAR Observations

	Methods
	Imaging of radio sources
	Modeling

	Results and discussion
	Detection and characterization of type III radio bursts
	Imaging of radio emission sources
	Plasma diagnostics and magnetic field analysis

	Summary and conclusions

	Modeling and Forecasting of Solar Energetic Protons
	Introduction
	Early-Stage SEP Acceleration by CME-Driven Shocks
	Overview
	Event Selection
	Coronal SEP Acceleration
	Input Data and Spectral Fitting
	Transport of Accelerated SEPs and Comparison with ERNE Observations
	Results and Discussions

	Solar Proton Flux Forecasting with Deep Learning Models
	Data preparation
	Method
	Results and discussion

	Conclusions

	Summary
	Future Work

	
	Kinematics of the CBFs in the Middle/Outer Corona
	Persistent Imaging Technique
	Resolving the radio emission location ambiguity
	Machine Learning Terminology
	Mathematical Representation of the LSTM NN Model
	Evaluation Metrics

	Deep Learning Model Configuration
	Description of Skill Scores


